These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35612314)

  • 1. Rapid Hypothesis Testing in Candida albicans Clinical Isolates Using a Cloning-Free, Modular, and Recyclable System for CRISPR-Cas9 Mediated Mutant and Revertant Construction.
    Liu J; Vogel AK; Miao J; Carnahan JA; Lowes DJ; Rybak JM; Peters BM
    Microbiol Spectr; 2022 Jun; 10(3):e0263021. PubMed ID: 35612314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing gene function in
    Ramírez-Zavala B; Hoffmann A; Krüger I; Schwanfelder S; Barker KS; Rogers PD; Morschhäuser J
    mSphere; 2024 Jul; 9(7):e0038824. PubMed ID: 38940507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans.
    Reuss O; Vik A; Kolter R; Morschhäuser J
    Gene; 2004 Oct; 341():119-27. PubMed ID: 15474295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of Candida albicans with a synthetic hygromycin B resistance gene.
    Basso LR; Bartiss A; Mao Y; Gast CE; Coelho PS; Snyder M; Wong B
    Yeast; 2010 Dec; 27(12):1039-48. PubMed ID: 20737428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted Genetic Changes in Candida albicans Using Transient CRISPR-Cas9 Expression.
    Huang MY; Cravener MC; Mitchell AP
    Curr Protoc; 2021 Jan; 1(1):e19. PubMed ID: 33491919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans.
    Marton T; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32878930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simple and Universal System for Gene Manipulation in
    Al Abdallah Q; Ge W; Fortwendel JR
    mSphere; 2017; 2(6):. PubMed ID: 29202040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy.
    Sasse C; Morschhäuser J
    Methods Mol Biol; 2012; 845():3-17. PubMed ID: 22328364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new rapid and efficient system with dominant selection developed to inactivate and conditionally express genes in Candida albicans.
    Lai WC; Sun HF; Lin PH; Ho Lin HL; Shieh JC
    Curr Genet; 2016 Feb; 62(1):213-35. PubMed ID: 26497136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains.
    Cen Y; Timmermans B; Souffriau B; Thevelein JM; Van Dijck P
    Fungal Genet Biol; 2017 Oct; 107():44-50. PubMed ID: 28822858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans.
    Halder V; Porter CBM; Chavez A; Shapiro RS
    Nat Protoc; 2019 Mar; 14(3):955-975. PubMed ID: 30737491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 13. Plasmid-Based CRISPR-Cas9 Gene Editing in Multiple
    Lombardi L; Oliveira-Pacheco J; Butler G
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30867327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the toolkit for genetic manipulation and discovery in
    Gregor JB; Gutierrez-Schultz VA; Hoda S; Baker KM; Saha D; Burghaze MG; Briggs SD
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans.
    Shapiro RS; Chavez A; Porter CBM; Hamblin M; Kaas CS; DiCarlo JE; Zeng G; Xu X; Revtovich AV; Kirienko NV; Wang Y; Church GM; Collins JJ
    Nat Microbiol; 2018 Jan; 3(1):73-82. PubMed ID: 29062088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of RNA-Protein Complexes for Genome Editing in Non-
    Grahl N; Demers EG; Crocker AW; Hogan DA
    mSphere; 2017; 2(3):. PubMed ID: 28657070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Generation of a CRISPR Interference System for Genetic Repression and Essential Gene Analysis in the Fungal Pathogen Candida albicans.
    Wensing L; Shapiro RS
    Methods Mol Biol; 2022; 2377():69-88. PubMed ID: 34709611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-mediated Genome Editing of the Human Fungal Pathogen Candida albicans.
    Evans BA; Pickerill ES; Vyas VK; Bernstein DA
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30507925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-genome sequencing reveals highly specific gene targeting by in vitro assembled Cas9-ribonucleoprotein complexes in
    Al Abdallah Q; Souza ACO; Martin-Vicente A; Ge W; Fortwendel JR
    Fungal Biol Biotechnol; 2018; 5():11. PubMed ID: 29992034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.