These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35612530)

  • 1. Solvent-Induced Redox Isomerism of Cobalt Complexes with Redox-Active Bisguanidine Ligands.
    Lohmeyer L; Kaifer E; Himmel HJ
    Inorg Chem; 2022 Jun; 61(22):8440-8454. PubMed ID: 35612530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of Redox-Induced Electron Transfer by Interligand Hydrogen Bonding in a Cobalt Complex with Redox-Active Guanidine Ligand.
    Lohmeyer L; Schön F; Kaifer E; Himmel HJ
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):10415-10422. PubMed ID: 33616266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching from Metal- to Ligand-Based Oxidation in Cobalt Complexes with Redox-Active Bisguanidine Ligands.
    Lohmeyer L; Kaifer E; Enders M; Himmel HJ
    Chemistry; 2021 Aug; 27(46):11852-11867. PubMed ID: 34101917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay and Competition Between Two Different Types of Redox-Active Ligands in Cobalt Complexes: How to Allocate the Electrons?
    Lohmeyer L; Werr M; Kaifer E; Himmel HJ
    Chemistry; 2022 Oct; 28(60):e202201789. PubMed ID: 35894809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Crown Ether Functions as Secondary Coordination Spheres for the Manipulation of Ligand-Metal Intramolecular Electron Transfer in Copper-Guanidine Complexes.
    Haaf S; Kaifer E; Wadepohl H; Himmel HJ
    Chemistry; 2021 Jan; 27(3):959-970. PubMed ID: 32833269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homo- and Heterobinuclear Cu and Pd Complexes with a Bridging Redox-Active Bisguanidino-Substituted Dioxolene Ligand: Electronic Structure and Metal-Ligand Electron-Transfer.
    Schrempp DF; Schneider E; Kaifer E; Wadepohl H; Himmel HJ
    Chemistry; 2017 Aug; 23(48):11636-11648. PubMed ID: 28654163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-order NLO properties and two-state switching effects of transition metal redox complexes of iron and cobalt: A DFT study.
    Bibi T; Jadoon T; Muhammad S; Ayub K
    J Mol Graph Model; 2021 Sep; 107():107975. PubMed ID: 34246108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching and redox isomerism in first-row transition metal complexes containing redox active Schiff base ligands.
    Sasmal A; Garribba E; Gómez-García CJ; Desplanches C; Mitra S
    Dalton Trans; 2014 Nov; 43(42):15958-67. PubMed ID: 25233051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter- and Intramolecular Electron Transfer in Copper Complexes: Electronic Entatic State with Redox-Active Guanidine Ligands.
    Schrempp DF; Leingang S; Schnurr M; Kaifer E; Wadepohl H; Himmel HJ
    Chemistry; 2017 Oct; 23(55):13607-13611. PubMed ID: 28771843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the metal-ligand bonding in dinuclear complexes with redox-active guanidine ligands.
    Steuer L; Kaifer E; Himmel HJ
    Dalton Trans; 2021 Jul; 50(27):9467-9482. PubMed ID: 34136887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals.
    Tomat E; Curtis CJ
    Acc Chem Res; 2021 Dec; 54(24):4584-4594. PubMed ID: 34870973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular metal-ligand electron transfer triggered by co-ligand substitution.
    Ziesak A; Steuer L; Kaifer E; Wagner N; Beck J; Wadepohl H; Himmel HJ
    Dalton Trans; 2018 Jul; 47(28):9430-9441. PubMed ID: 29953160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity.
    Ott JC; Bürgy D; Guan H; Gade LH
    Acc Chem Res; 2022 Mar; 55(6):857-868. PubMed ID: 35164502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Origin of One- or Two-Step Valence Tautomeric Transitions in Bis(dioxolene)-Bridged Dinuclear Cobalt Complexes.
    Gransbury GK; Livesay BN; Janetzki JT; Hay MA; Gable RW; Shores MP; Starikova A; Boskovic C
    J Am Chem Soc; 2020 Jun; 142(24):10692-10704. PubMed ID: 32412246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.
    Jones JS; Gabbaï FP
    Acc Chem Res; 2016 May; 49(5):857-67. PubMed ID: 27092722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.
    Karthikeyan A; Thomas Muthiah P; Perdih F
    Acta Crystallogr C Struct Chem; 2016 May; 72(Pt 5):442-50. PubMed ID: 27146575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling Radical-Type Single-Electron Elementary Steps in Catalysis with Redox-Active Ligands and Substrates.
    van Leest NP; de Zwart FJ; Zhou M; de Bruin B
    JACS Au; 2021 Aug; 1(8):1101-1115. PubMed ID: 34467352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and electronic structure of nonradical homoleptic pyridyl-azo-oxime complexes of cobalt(III) and the azo-oxime anion radical congener: an experimental and theoretical investigation.
    Pramanik S; Roy S; Ghorui T; Ganguly S; Pramanik K
    Dalton Trans; 2014 Apr; 43(14):5317-34. PubMed ID: 24513648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trinuclear complexes and coordination polymers of redox-active guanidino-functionalized aromatic (GFA) compounds with a triphenylene core.
    Lebkücher A; Wagner C; Hübner O; Kaifer E; Himmel HJ
    Inorg Chem; 2014 Sep; 53(18):9876-96. PubMed ID: 25188743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridine coordination chemistry for molecular assemblies on surfaces.
    de Ruiter G; Lahav M; van der Boom ME
    Acc Chem Res; 2014 Dec; 47(12):3407-16. PubMed ID: 25350402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.