BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35612568)

  • 1. Dipyrromethane-Based PGeP Pincer Germyl Rhodium Complexes.
    Cabeza JA; Fernández-Colinas JM; García-Álvarez J; García-Álvarez P; Laglera-Gándara CJ; Ramos-Martín M
    Chemistry; 2022 Aug; 28(45):e202200847. PubMed ID: 35612568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dipyrromethane-based diphosphane-germylene as precursor to tetrahedral copper(i) and T-shaped silver(i) and gold(i) PGeP pincer complexes.
    Cabeza JA; Fernández I; García-Álvarez P; Laglera-Gándara CJ
    Dalton Trans; 2019 Sep; 48(35):13273-13280. PubMed ID: 31423508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of Late First-Row Transition Metal (Fe-Zn) Dichlorides with a PGeP Pincer Germylene.
    Arauzo A; Cabeza JA; Fernández I; García-Álvarez P; García-Rubio I; Laglera-Gándara CJ
    Chemistry; 2021 Mar; 27(15):4985-4992. PubMed ID: 33476073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From a Diphosphanegermylene to Nickel, Palladium, and Platinum Complexes Containing Germyl PGeP Pincer Ligands.
    Álvarez-Rodríguez L; Brugos J; Cabeza JA; García-Álvarez P; Pérez-Carreño E
    Chemistry; 2017 Oct; 23(60):15107-15115. PubMed ID: 28833721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Germylene Supported by Two 2-Pyrrolylphosphane Groups as Precursor to PGeP Pincer Square-Planar Group 10 Metal(II) and T-Shaped Gold(I) Complexes.
    Cabeza JA; Fernández I; Fernández-Colinas JM; García-Álvarez P; Laglera-Gándara CJ
    Chemistry; 2019 Sep; 25(53):12423-12430. PubMed ID: 31322777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stannylenes based on pyrrole-phosphane and dipyrromethane-diphosphane scaffolds: syntheses and behavior as precursors to PSnP pincer palladium(II), palladium(0) and gold(I) complexes.
    Cabeza JA; Fernández I; García-Álvarez P; García-Soriano R; Laglera-Gándara CJ; Toral R
    Dalton Trans; 2021 Nov; 50(44):16122-16132. PubMed ID: 34668918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. POP-pincer silyl complexes of group 9: rhodium versus iridium.
    Esteruelas MA; Oliván M; Vélez A
    Inorg Chem; 2013 Oct; 52(20):12108-19. PubMed ID: 24088172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntheses of Iminophosphomamido Chlorogermylenes and Their Complexation with a Rhodium(I) Complex.
    Takahashi S; Kamiyama S; Ishii A; Nakata N
    Chem Asian J; 2024 Feb; 19(4):e202300968. PubMed ID: 38050920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and reactivity of Ir(I) and Ir(III) complexes with MeNH2, Me2C=NR (R = H, Me), C,N-C6H4{C(Me)=N(Me)}-2, and N,N'-RN=C(Me)CH2C(Me2)NHR (R = H, Me) ligands.
    Vicente J; Chicote MT; Vicente-Hernández I; Bautista D
    Inorg Chem; 2008 Oct; 47(20):9592-605. PubMed ID: 18808115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POP-pincer ruthenium complexes: d(6) counterparts of osmium d(4) species.
    Alós J; Bolaño T; Esteruelas MA; Oliván M; Oñate E; Valencia M
    Inorg Chem; 2014 Jan; 53(2):1195-209. PubMed ID: 24405059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydrogenative Double C-H Bond Activation in a Germylene-Rhodium Complex*.
    Bajo S; Alcaide MM; López-Serrano J; Campos J
    Chemistry; 2021 Nov; 27(66):16422-16428. PubMed ID: 34611944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodium-Mediated Dehydrogenation of Hydroboranes and Group 14 Compounds: Base-Stabilized Silylene and Germylene Complexes vs. Transmetalation.
    Hsiang SJ; Hayes PG
    Chemistry; 2024 Jan; 30(5):e202302925. PubMed ID: 37931068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xantphos-type complexes of group 9: rhodium versus iridium.
    Esteruelas MA; Oliván M; Vélez A
    Inorg Chem; 2013 May; 52(9):5339-49. PubMed ID: 23560531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination and Coupling of OH-Functionalized C
    Werner H; Wiedemann R; Mahr N; Steinert P; Wolf J
    Chemistry; 1996 May; 2(5):561-569. PubMed ID: 29178219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conclusive evidence on the mechanism of the rhodium-mediated decyanative borylation.
    Esteruelas MA; Oliván M; Vélez A
    J Am Chem Soc; 2015 Sep; 137(38):12321-9. PubMed ID: 26339861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chelate and pincer carbene complexes of rhodium and platinum derived from hexaphenylcarbodiphosphorane, Ph3P=C=PPh3.
    Kubo K; Jones ND; Ferguson MJ; McDonald R; Cavell RG
    J Am Chem Soc; 2005 Apr; 127(15):5314-5. PubMed ID: 15826157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-C coupling reactions in the coordination sphere of rhodium(I) and rhodium(III): New routes for the di- and trimerization of terminal alkynes.
    Schafer M; Wolf J; Werner H
    Dalton Trans; 2005 Apr; (8):1468-81. PubMed ID: 15824785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity Studies on a Binuclear Ruthenium(0) Complex Equipped with a Bridging κ(2)N,Ge-Amidinatogermylene Ligand.
    Cabeza JA; Fernández-Colinas JM; García-Álvarez P; Pérez-Carreño E; Polo D
    Inorg Chem; 2015 May; 54(10):4850-61. PubMed ID: 25945729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Z-type PGeP pincer germylene ligand in a T-shaped palladium(0) complex.
    Cabeza JA; García-Álvarez P; Laglera-Gándara CJ; Pérez-Carreño E
    Chem Commun (Camb); 2020 Nov; 56(90):14095-14097. PubMed ID: 33107872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination chemistry of phosphanyl amino acids: solid state and solution structures of neutral and cationic rhodium complexes.
    Meyer C; Scherer M; Schönberg H; Rüegger H; Loss S; Gramlich V; Grützmacher H
    Dalton Trans; 2006 Jan; (1):137-48. PubMed ID: 16357969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.