These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35612634)

  • 1. Rational engineering of industrial S. cerevisiae: towards xylitol production from sugarcane straw.
    de Mello FDSB; Maneira C; Suarez FUL; Nagamatsu S; Vargas B; Vieira C; Secches T; Coradini ALV; Silvello MAC; Goldbeck R; Pereira GAG; Teixeira GS
    J Genet Eng Biotechnol; 2022 May; 20(1):80. PubMed ID: 35612634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae.
    Cadete RM; de Las Heras AM; Sandström AG; Ferreira C; Gírio F; Gorwa-Grauslund MF; Rosa CA; Fonseca C
    Biotechnol Biofuels; 2016; 9():167. PubMed ID: 27499810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.
    Jo JH; Oh SY; Lee HS; Park YC; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
    Johansson B; Christensson C; Hobley T; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Sep; 67(9):4249-55. PubMed ID: 11526030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob.
    Kogje A; Ghosalkar A
    3 Biotech; 2016 Dec; 6(2):127. PubMed ID: 28330197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
    Bera AK; Ho NW; Khan A; Sedlak M
    J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae.
    Reshamwala SMS; Lali AM
    Biotechnol Prog; 2020 May; 36(3):e2972. PubMed ID: 31990139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR.
    Xie CY; Yang BX; Song QR; Xia ZY; Gou M; Tang YQ
    Microb Cell Fact; 2020 Nov; 19(1):211. PubMed ID: 33187525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylose fermentation efficiency of industrial
    Cunha JT; Soares PO; Romaní A; Thevelein JM; Domingues L
    Biotechnol Biofuels; 2019; 12():20. PubMed ID: 30705706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.
    Hernández-Pérez AF; de Arruda PV; Felipe Md
    Braz J Microbiol; 2016; 47(2):489-96. PubMed ID: 26991282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate.
    Gurpilhares DB; Hasmann FA; Pessoa A; Roberto IC
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):87-93. PubMed ID: 18830730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae.
    Petschacher B; Nidetzky B
    Microb Cell Fact; 2008 Mar; 7():9. PubMed ID: 18346277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.
    Guirimand G; Sasaki K; Inokuma K; Bamba T; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3477-87. PubMed ID: 26631184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain.
    Morais Junior WG; Pacheco TF; Trichez D; Almeida JRM; Gonçalves SB
    Yeast; 2019 May; 36(5):349-361. PubMed ID: 30997699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.
    Romaní A; Pereira F; Johansson B; Domingues L
    Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans.
    Prabhu AA; Bosakornranut E; Amraoui Y; Agrawal D; Coulon F; Vivekanand V; Thakur VK; Kumar V
    Biotechnol Biofuels; 2020 Dec; 13(1):209. PubMed ID: 33375948
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Novy V; Wang R; Westman JO; Franzén CJ; Nidetzky B
    Biotechnol Biofuels; 2017; 10():205. PubMed ID: 28878820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.