These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35612740)

  • 1. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen.
    Ball B; Krieger JR; Geddes-McAlister J
    Methods Mol Biol; 2022; 2456():141-151. PubMed ID: 35612740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Proteomic Profiling of Cryptococcus neoformans.
    Ball B; Geddes-McAlister J
    Curr Protoc Microbiol; 2019 Dec; 55(1):e94. PubMed ID: 31797572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic Profiling of Samples Derived from a Murine Model Following Cryptococcus neoformans Infection.
    Muselius B; Bodein A; Roux-Dalvai F; Droit A; Geddes-McAlister J
    Methods Mol Biol; 2024; 2775():127-137. PubMed ID: 38758315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteome of Cryptococcus neoformans.
    Selvan LD; Renuse S; Kaviyil JE; Sharma J; Pinto SM; Yelamanchi SD; Puttamallesh VN; Ravikumar R; Pandey A; Prasad TS; Harsha HC
    J Proteomics; 2014 Jan; 97():287-95. PubMed ID: 23851311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Proteome and Phosphoproteome Profiling in Magnaporthe oryzae.
    Michna T; Tenzer S
    Methods Mol Biol; 2021; 2356():109-119. PubMed ID: 34236681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification.
    Chen Y; Liang X
    Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling.
    Hsu CC; Arrington JV; Tao WA
    Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples.
    Huang Y; Shao X; Liu Y; Yan K; Ying W; He F; Wang D
    Anal Chem; 2023 Dec; 95(49):17974-17980. PubMed ID: 38011496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor.
    Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D
    J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomic Strategy for Profiling Osmotic Stress Signaling in Arabidopsis.
    Hsu CC; Tsai CF; Tao WA; Wang P
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32658193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Free Quantitative Proteomics Workflow for Discovery-Driven Host-Pathogen Interactions.
    Ball B; Sukumaran A; Geddes-McAlister J
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33165315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of phosphorylation in cancer.
    Ruprecht B; Lemeer S
    Expert Rev Proteomics; 2014 Jun; 11(3):259-67. PubMed ID: 24666026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Reprogramming of Host Kinase Signaling in Response to Fungal Infection.
    Pandey A; Ding SL; Qin QM; Gupta R; Gomez G; Lin F; Feng X; Fachini da Costa L; Chaki SP; Katepalli M; Case ED; van Schaik EJ; Sidiq T; Khalaf O; Arenas A; Kobayashi KS; Samuel JE; Rivera GM; Alaniz RC; Sze SH; Qian X; Brown WJ; Rice-Ficht A; Russell WK; Ficht TA; de Figueiredo P
    Cell Host Microbe; 2017 May; 21(5):637-649.e6. PubMed ID: 28494245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Profiling of Protein Abundance and Phosphorylation State in Plant Tissues Using Tandem Mass Tags.
    Song G; Montes C; Walley JW
    Methods Mol Biol; 2020; 2139():147-156. PubMed ID: 32462584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Phosphoproteomic Analysis of Brain Tissues.
    Bai B; Tan H; Peng J
    Methods Mol Biol; 2017; 1598():199-211. PubMed ID: 28508362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomic Analysis of Signaling Pathways in Lymphomas.
    Häupl B; Wilke AC; Urlaub H; Oellerich T
    Methods Mol Biol; 2025; 2865():283-294. PubMed ID: 39424730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.