These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35613131)
1. The carbon catabolite repressor CreA is an essential virulence factor of Metarhizium acridum against Locusta migratoria. Song D; Jin Y; Shi Y; Xia Y; Peng G Pest Manag Sci; 2022 Aug; 78(8):3676-3684. PubMed ID: 35613131 [TBL] [Abstract][Full Text] [Related]
2. The Song D; Shi Y; Ji H; Xia Y; Peng G Front Microbiol; 2019; 10():1946. PubMed ID: 31497008 [TBL] [Abstract][Full Text] [Related]
3. Disruption of an adenylate-forming reductase required for conidiation, increases virulence of the insect pathogenic fungus Metarhizium acridum by enhancing cuticle invasion. Guo H; Wang H; Keyhani NO; Xia Y; Peng G Pest Manag Sci; 2020 Feb; 76(2):758-768. PubMed ID: 31392798 [TBL] [Abstract][Full Text] [Related]
4. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Wei Q; Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863 [TBL] [Abstract][Full Text] [Related]
5. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis. Peng G; Xia Y J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1659-66. PubMed ID: 25168679 [TBL] [Abstract][Full Text] [Related]
6. Calcineurin modulates growth, stress tolerance, and virulence in Metarhizium acridum and its regulatory network. Cao Y; Du M; Luo S; Xia Y Appl Microbiol Biotechnol; 2014 Oct; 98(19):8253-65. PubMed ID: 24931310 [TBL] [Abstract][Full Text] [Related]
7. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
8. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. Zhang J; Jiang H; Du Y; Keyhani NO; Xia Y; Jin K PLoS Pathog; 2019 Aug; 15(8):e1007964. PubMed ID: 31461507 [TBL] [Abstract][Full Text] [Related]
9. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793 [TBL] [Abstract][Full Text] [Related]
10. Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum. Luo Y; Yan X; Xia Y; Cao Y Appl Microbiol Biotechnol; 2023 May; 107(9):2969-2982. PubMed ID: 36941435 [TBL] [Abstract][Full Text] [Related]
11. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F Hu J; Xia Y Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423 [TBL] [Abstract][Full Text] [Related]
12. MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in Wen Z; Xia Y; Jin K Microbiol Spectr; 2022 Apr; 10(2):e0205121. PubMed ID: 35343772 [TBL] [Abstract][Full Text] [Related]
13. Downregulation of pre-rRNA processing gene Mamrd1 decreases growth, conidiation and virulence in the entomopathogenic fungus Metarhizium acridum. Cao Y; Li K; Xia Y Res Microbiol; 2011 Sep; 162(7):729-36. PubMed ID: 21624460 [TBL] [Abstract][Full Text] [Related]
14. Dipeptidase PEPDA Is Required for the Conidiation Pattern Shift in Metarhizium acridum. Li J; Su X; Cao Y; Xia Y Appl Environ Microbiol; 2021 Sep; 87(19):e0090821. PubMed ID: 34288712 [TBL] [Abstract][Full Text] [Related]
15. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Jin K; Peng G; Liu Y; Xia Y Fungal Genet Biol; 2015 Apr; 77():61-7. PubMed ID: 25865794 [TBL] [Abstract][Full Text] [Related]
16. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Zhang M; Wei Q; Xia Y; Jin K Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639 [TBL] [Abstract][Full Text] [Related]
17. Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. Cao Y; Li M; Xia Y J Invertebr Pathol; 2011 Sep; 108(1):7-12. PubMed ID: 21683706 [TBL] [Abstract][Full Text] [Related]
18. MaPmt1, a protein O-mannosyltransferase, contributes to virulence through governing the appressorium turgor pressure in Metarhizium acridum. Wen Z; Tian H; Xia Y; Jin K Fungal Genet Biol; 2020 Dec; 145():103480. PubMed ID: 33130254 [TBL] [Abstract][Full Text] [Related]
19. Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var. acridum germinating and differentiating on Locusta migratoria wings. He M; Xia Y FEMS Microbiol Lett; 2009 Feb; 291(1):127-35. PubMed ID: 19076228 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]