These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35613435)

  • 21. Quantitative SEM characterisation of ceramic target prior and after magnetron sputtering: a case study of aluminium zinc oxide.
    Jahangiri AR; Rajabi Kalvani P; Shapouri S; Sari A; ŢĂlu Ş; Jalili YS
    J Microsc; 2021 Mar; 281(3):190-201. PubMed ID: 32926411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of TiN nanostructure as a hydrogen peroxide sensor by oblique angle deposition.
    Xie Z; Liu X; Wang W; Liu C; Li Z; Zhang Z
    Nanoscale Res Lett; 2014 Mar; 9(1):105. PubMed ID: 24589278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique angles.
    Godinho V; Moskovkin P; Álvarez R; Caballero-Hernández J; Schierholz R; Bera B; Demarche J; Palmero A; Fernández A; Lucas S
    Nanotechnology; 2014 Sep; 25(35):355705. PubMed ID: 25120129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composite Assembling of Oxide-Based Optically Transparent Electrodes for High-Performance Asymmetric Supercapacitors.
    Sharma M; Adalati R; Kumar A; Mehta M; Chandra R
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35656926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental and theoretical study of the optical and electrical properties of nanostructured indium tin oxide fabricated by oblique-angle deposition.
    Sood AW; Poxson DJ; Mont FW; Chhajed S; Cho J; Schubert EF; Welser RE; Dhar NK; Sood AK
    J Nanosci Nanotechnol; 2012 May; 12(5):3950-3. PubMed ID: 22852330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors.
    Li F; Wang J; Liu L; Qu J; Li Y; Bandari VK; Karnaushenko D; Becker C; Faghih M; Kang T; Baunack S; Zhu M; Zhu F; Schmidt OG
    Adv Sci (Weinh); 2019 Oct; 6(20):1901051. PubMed ID: 31637162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Assembly of 3D-BCN Microspheres as a Microsupercapacitor Electrode for Wearable Energy Storage.
    Tu D; Wu Z; Xu J; Zhou Y; Yang W; Yang Y; Zha X; Shi L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47416-47424. PubMed ID: 32972139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoplasmonic response of porous Au-TiO
    Rodrigues MS; Borges J; Proença M; Pedrosa P; Martin N; Romanyuk K; Kholkin AL; Vaz F
    Nanotechnology; 2019 May; 30(22):225701. PubMed ID: 30754029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Performance of an Electric Double Layer Microsupercapacitor Based on Novel Carbon-Encapsulated Cu Nanowire Network Structure As the Electrode.
    Wang J; Wang X; Lee SW; Zhang Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40481-40489. PubMed ID: 31589021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional Microcavity Array Electrodes for High-Capacitance All-Solid-State Flexible Microsupercapacitors.
    Maeng J; Kim YJ; Meng C; Irazoqui PP
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13458-65. PubMed ID: 27176134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics.
    Zhang L; Viola W; Andrew TL
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36834-36840. PubMed ID: 30295460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface area characterization of obliquely deposited metal oxide nanostructured thin films.
    Krause KM; Taschuk MT; Harris KD; Rider DA; Wakefield NG; Sit JC; Buriak JM; Thommes M; Brett MJ
    Langmuir; 2010 Mar; 26(6):4368-76. PubMed ID: 20000633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid Metal-Templated Tin-Doped Tellurium Films for Flexible Asymmetric Pseudocapacitors.
    Mousavi M; Mittal U; Ghasemian MB; Baharfar M; Tang J; Yao Y; Merhebi S; Zhang C; Sharma N; Kalantar-Zadeh K; Mayyas M
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51519-51530. PubMed ID: 36322105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors.
    Alper JP; Wang S; Rossi F; Salviati G; Yiu N; Carraro C; Maboudian R
    Nano Lett; 2014; 14(4):1843-7. PubMed ID: 24635718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid, all dry microfabrication of three-dimensional Co
    Ma X; Feng S; He L; Yan M; Tian X; Li Y; Tang C; Hong X; Mai L
    Nanoscale; 2017 Aug; 9(32):11765-11772. PubMed ID: 28783194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of Optical Multilayer Devices from Porous Silicon Coatings with Closed Porosity by Magnetron Sputtering.
    Caballero-Hernández J; Godinho V; Lacroix B; Jiménez de Haro MC; Jamon D; Fernández A
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13889-97. PubMed ID: 26046812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sputtered Porous Li-Fe-P-O Film Cathodes Prepared by Radio Frequency Sputtering for Li-ion Microbatteries.
    Sugiawati VA; Vacandio F; Perrin-Pellegrino C; Galeyeva A; Kurbatov AP; Djenizian T
    Sci Rep; 2019 Aug; 9(1):11172. PubMed ID: 31371758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.
    Bünting A; Uhlenbruck S; Sebold D; Buchkremer HP; Vaßen R
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22594-600. PubMed ID: 26381359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors.
    Peng Z; Ye R; Mann JA; Zakhidov D; Li Y; Smalley PR; Lin J; Tour JM
    ACS Nano; 2015 Jun; 9(6):5868-75. PubMed ID: 25978090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile Route to NiO Nanostructured Electrode Grown by Oblique Angle Deposition Technique for Supercapacitors.
    Kannan V; Inamdar AI; Pawar SM; Kim HS; Park HC; Kim H; Im H; Chae YS
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17220-5. PubMed ID: 27322601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.