These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35613641)

  • 1. An improved non-stationary geostatistical method for three-dimensional interpolation of Benzo(a)pyrene at a contaminated site.
    Li Y; Hou Y; Tao H; Cao H; Liu X; Wang Z; Liao X
    Sci Total Environ; 2022 Sep; 838(Pt 2):156169. PubMed ID: 35613641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method.
    Qiao P; Yang S; Wei W; Li P; Cheng Y; Liang S; Lei M; Chen T
    Environ Geochem Health; 2021 Jan; 43(1):23-36. PubMed ID: 32696201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites.
    Qiao P; Li P; Cheng Y; Wei W; Yang S; Lei M; Chen T
    Environ Geochem Health; 2019 Dec; 41(6):2709-2730. PubMed ID: 31144251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geostatistical interpolation of available copper in orchard soil as influenced by planting duration.
    Fu C; Zhang H; Tu C; Li L; Luo Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):52-63. PubMed ID: 27798802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and uncertainty analysis of soil Bbf spatial distribution estimation at a coking plant-contaminated site based on normalization geostatistical technologies.
    Liu G; Niu J; Zhang C; Guo G
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20121-30. PubMed ID: 26300353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant.
    Yuan Y; Yang K; Cheng L; Bai Y; Wang Y; Hou Y; Ding A
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
    Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spatial distribution prediction of surface soil Pb in a battery contaminated site].
    Liu G; Niu JJ; Zhang C; Zhao X; Guo GL
    Huan Jing Ke Xue; 2014 Dec; 35(12):4712-9. PubMed ID: 25826945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of spatial prediction and sampling strategy of site contamination based on Thiessen polygon coupling interpolation.
    Liu X; Zheng L; Li Z; Liu F; Obin N
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78959-78972. PubMed ID: 37278892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model.
    Yin G; Chen X; Zhu H; Chen Z; Su C; He Z; Qiu J; Wang T
    Sci Total Environ; 2022 Jun; 825():153948. PubMed ID: 35219652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content].
    Hu KL; Li BG; Lu YZ; Zhang FR
    Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Soil Heavy Metal Distribution Using Geographically Weighted Regression Kriging.
    Fu P; Yang Y; Zou Y
    Bull Environ Contam Toxicol; 2022 Feb; 108(2):344-350. PubMed ID: 34741183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different interpolation methods and sequential Gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu, PCP and dioxins/furans.
    Metahni S; Coudert L; Gloaguen E; Guemiza K; Mercier G; Blais JF
    Environ Pollut; 2019 Sep; 252(Pt A):409-419. PubMed ID: 31158669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].
    Yang SH; Zhang HT; Guo L; Ren Y
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional spatial prediction of Zn in the soil of a former tire manufacturing plant using machine learning and readily attainable multisource auxiliary data.
    Peng Y; Chen J; Xie E; Zhang X; Yan G; Zhao Y
    Environ Pollut; 2023 Feb; 318():120931. PubMed ID: 36565911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data.
    Liu G; Zhou X; Li Q; Shi Y; Guo G; Zhao L; Wang J; Su Y; Zhang C
    Environ Pollut; 2020 Dec; 267():115631. PubMed ID: 33254608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis.
    Xie Y; Chen TB; Lei M; Yang J; Guo QJ; Song B; Zhou XY
    Chemosphere; 2011 Jan; 82(3):468-76. PubMed ID: 20970158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS.
    Suh J; Lee H; Choi Y
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27916970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy.
    Chakraborty S; Weindorf DC; Zhu Y; Li B; Morgan CL; Ge Y; Galbraith J
    J Environ Monit; 2012 Nov; 14(11):2886-92. PubMed ID: 22986574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spatial interpolation model of soil organic carbon density considering land-use and spatial heterogeneity.].
    Wu ZH; Liu YF; Chen YY; Guo L; Jiang QH; Wang SC
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):238-246. PubMed ID: 29692033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.