These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35614790)

  • 1. Compatibilization of Immiscible Polymer Blends Using
    Wang H; Dong W; Li Y
    ACS Macro Lett; 2015 Dec; 4(12):1398-1403. PubMed ID: 35614790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Interfacial Janus Nanomicelles by Reactive Blending and Their Compatibilization Effects on Immiscible Polymer Blends.
    Wang H; Fu Z; Dong W; Li Y; Li J
    J Phys Chem B; 2016 Sep; 120(34):9240-52. PubMed ID: 27505259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive Compatibilization: Formation of Double-Grafted Copolymers by In Situ Binary Grafting and Their Compatibilization Effect.
    Chen D; Wang H; Li Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33091-33099. PubMed ID: 28882035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive Nanoparticles Compatibilized Immiscible Polymer Blends: Synthesis of Reactive SiO
    Wang H; Fu Z; Zhao X; Li Y; Li J
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14358-14370. PubMed ID: 28379686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of PLLA Ductility by Blending with PVDF: Localization of Compatibilizers at Interface and Its Glycidyl Methacrylate Content Dependency.
    Zhang Y; Gu X; Ni C; Li F; Li Y; You J
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive Comb Polymer Compatibilized Immiscible PVDF/PLLA Blends: Effects of the Main Chain Structure of Compatibilizer.
    Yang X; Song J; Wang H; Lin Q; Jin X; Yang X; Li Y
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32121651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strengthening Interfacial Adhesion and Foamability of Immiscible Polymer Blends via Rationally Designed Reactive Macromolecular Compatibilizers.
    Wang Z; Zhang K; Wang H; Wu X; Wang H; Weng C; Li Y; Liu S; Yang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45832-45843. PubMed ID: 36169636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Janus Particle Compatibilizer with Adjustable Structure and Optimal Interface Location for Compatibilization of Highly Immiscible Polymer Blends.
    Hu J; Hao X; Ning N; Yu B; Tian M
    ACS Appl Mater Interfaces; 2023 May; 15(19):23963-23970. PubMed ID: 37158003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Interfacial Adhesion by Reactive Carbon Nanotubes: New Route to High-Performance Immiscible Polymer Blend Nanocomposites with Simultaneously Enhanced Toughness, Tensile Strength, and Electrical Conductivity.
    Zhao X; Wang H; Fu Z; Li Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8411-8416. PubMed ID: 29488745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly toughened poly (lactic acid)/poly (butylene adipate-terephthalate) blends in-situ compatibilized by MMA-co-GMA copolymers with different epoxy group content.
    Xu P; Zhang C; Niu D; Yang W; Chen S; Liu T; Shen Y; Ma P
    Int J Biol Macromol; 2023 Jul; 243():125017. PubMed ID: 37245750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatibilization of Immiscible Polypropylene/Poly(methyl methacrylate) Blends by Silica Particles with Janus and Random Component-Selective Grafts.
    Yang X; Wang F; Gao Y; Zhang H; Liu Z; Feng J
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19615-19624. PubMed ID: 38587106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ reactive compatiblization modified poly(l-lactic acid) and poly (butylene adipate-co-terephthalate) blends with improved toughening and thermal characteristics.
    Wen J; Yi L; Su J; Han J
    Int J Biol Macromol; 2023 Mar; 231():123419. PubMed ID: 36709812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling.
    Hu L; Han Y; Rong C; Wang X; Wang H; Li Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):11016-11027. PubMed ID: 35171566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of blending sequences and molecular structures of the compatibilizers on the morphology and properties of PLLA/ABS blends.
    Cao X; Dong W; He M; Zhang J; Ren F; Li Y
    RSC Adv; 2019 Jan; 9(4):2189-2198. PubMed ID: 35516126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride).
    Yu C; Han L; Bao J; Shan G; Bao Y; Pan P
    J Phys Chem B; 2016 Aug; 120(32):8046-54. PubMed ID: 27414064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Different Comonomers Added to Graft Copolymers on the Properties of PLA/PPC/PLA-g-GMA Blends.
    Song L; Zhang Q; Hao Y; Li Y; Chi W; Cong F; Shi Y; Liu LZ
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the compatibility to achieve toughened biobased poly(lactic acid)/poly(butylene terephthalate) blends.
    Chang BP; Mohanty AK; Misra M
    RSC Adv; 2018 Aug; 8(49):27709-27724. PubMed ID: 35542721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between the Co-Continuous Morphology of Immiscible Polymer Blends and the Structure of an In Situ Formed Graft Copolymer.
    Liang T; Huang Q; Wei Z; Lei W; You J; Liu J; Ren X; Zhang Q; Hu G; Shi D
    Macromol Rapid Commun; 2023 Aug; 44(15):e2300141. PubMed ID: 37211666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-tough polylactic acid (PLA)/poly(butylene succinate) (PBS) materials prepared through reactive blending with epoxy-functionalized PMMA-GMA copolymer.
    Zhao T; Yu J; Pan H; Zhao Y; Zhang Q; Yu X; Bian J; Han L; Zhang H
    Int J Biol Macromol; 2023 Nov; 251():126150. PubMed ID: 37544555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance and functional fully bio-based polylactic acid/polypropylene carbonate blends by in situ multistep reaction-induced interfacial control.
    Song L; Chi W; Zhang Q; Ren J; Yang B; Cong F; Li Y; Wang W; Li X; Wang Y
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128799. PubMed ID: 38110165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.