These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35614792)

  • 1. Supramolecular Polymerization Controlled by Reversible Conformational Modulation.
    Xu JF; Huang Z; Chen L; Qin B; Song Q; Wang Z; Zhang X
    ACS Macro Lett; 2015 Dec; 4(12):1410-1414. PubMed ID: 35614792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-responsive supramolecular polymerization in aqueous media driven by electrostatic attraction-enhanced crown ether-based molecular recognition.
    Ji X; Zhu K; Yan X; Ma Y; Li J; Hu B; Yu Y; Huang F
    Macromol Rapid Commun; 2012 Jul; 33(14):1197-202. PubMed ID: 22495805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecularly Catalyzed Polymerization: From Consecutive Dimerization to Polymerization.
    Tang X; Huang Z; Chen H; Kang Y; Xu JF; Zhang X
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8545-8549. PubMed ID: 29756289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Polymerization Controlled through Kinetic Trapping.
    Chen H; Huang Z; Wu H; Xu JF; Zhang X
    Angew Chem Int Ed Engl; 2017 Dec; 56(52):16575-16578. PubMed ID: 29119651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular polymerization promoted and controlled through self-sorting.
    Huang Z; Yang L; Liu Y; Wang Z; Scherman OA; Zhang X
    Angew Chem Int Ed Engl; 2014 May; 53(21):5351-5. PubMed ID: 24711345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Supramolecular Polymerization through Host-Guest Interaction and Photochemistry.
    Yang L; Bai Y; Tan X; Wang Z; Zhang X
    ACS Macro Lett; 2015 Jun; 4(6):611-615. PubMed ID: 35596401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Interfacial Polymerization: A Controllable Method of Fabricating Supramolecular Polymeric Materials.
    Qin B; Zhang S; Song Q; Huang Z; Xu JF; Zhang X
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7639-7643. PubMed ID: 28480605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable Supramolecular Polymerization Promoted by Host-Enhanced Photodimerization.
    Kang Y; Cai Z; Huang Z; Tang X; Xu JF; Zhang X
    ACS Macro Lett; 2016 Dec; 5(12):1397-1401. PubMed ID: 35651207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of a supramolecular hyperbranched polymer from self-organization of an AB2 monomer containing a crown ether and two paraquat moieties.
    Huang F; Gibson HW
    J Am Chem Soc; 2004 Nov; 126(45):14738-9. PubMed ID: 15535696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cucurbit[8]uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination.
    Liu Y; Huang Z; Tan X; Wang Z; Zhang X
    Chem Commun (Camb); 2013 Jun; 49(51):5766-8. PubMed ID: 23689560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests.
    Zhang M; Yan X; Huang F; Niu Z; Gibson HW
    Acc Chem Res; 2014 Jul; 47(7):1995-2005. PubMed ID: 24804805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of nor-seco-cucurbit[10]uril based supramolecular polymers via self-sorting.
    Yang Y; Ni XL; Xu JF; Zhang X
    Chem Commun (Camb); 2019 Nov; 55(92):13836-13839. PubMed ID: 31663546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular Polymerization from Controllable Fabrication to Living Polymerization.
    Huang Z; Qin B; Chen L; Xu JF; Faul CFJ; Zhang X
    Macromol Rapid Commun; 2017 Sep; 38(17):. PubMed ID: 28752583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Living supramolecular polymerization based on reversible deactivation of a monomer by using a 'dummy' monomer.
    Fukui T; Sasaki N; Takeuchi M; Sugiyasu K
    Chem Sci; 2019 Jul; 10(28):6770-6776. PubMed ID: 31391897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril.
    Appel EA; Biedermann F; Rauwald U; Jones ST; Zayed JM; Scherman OA
    J Am Chem Soc; 2010 Oct; 132(40):14251-60. PubMed ID: 20845973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-switchable supramolecular graft polymer formation via ferrocene-cyclodextrin assembly.
    Szillat F; Schmidt BV; Hubert A; Barner-Kowollik C; Ritter H
    Macromol Rapid Commun; 2014 Jul; 35(14):1293-300. PubMed ID: 24753002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Enhanced Fluorescence of Supramolecular Polymers Based on a Cyanostilbene Derivative and Cucurbit[8]uril in Aqueous Solution.
    Kim HJ; Whang DR; Gierschner J; Park SY
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15915-15919. PubMed ID: 27860154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cucurbit[7]Uril-Based Supramolecular Chemistry for Reversible B/Z-DNA Transition.
    Wang SR; Wang JQ; Xu GH; Wei L; Fu BS; Wu LY; Song YY; Yang XR; Li C; Liu SM; Zhou X
    Adv Sci (Weinh); 2018 Jul; 5(7):1800231. PubMed ID: 30027051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular AA-BB-type linear polymers with relatively high molecular weights via the self-assembly of bis(m-phenylene)-32-crown-10 cryptands and a bisparaquat derivative.
    Niu Z; Huang F; Gibson HW
    J Am Chem Soc; 2011 Mar; 133(9):2836-9. PubMed ID: 21309571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.