These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35614796)

  • 1. Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids.
    Srivastava S; Agarwal P; Mangal R; Koch DL; Narayanan S; Archer LA
    ACS Macro Lett; 2015 Oct; 4(10):1149-1153. PubMed ID: 35614796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles.
    Liu S; Senses E; Jiao Y; Narayanan S; Akcora P
    ACS Macro Lett; 2016 May; 5(5):569-573. PubMed ID: 35632389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Nanoparticles in Entangled Polymer Solutions.
    Nath P; Mangal R; Kohle F; Choudhury S; Narayanan S; Wiesner U; Archer LA
    Langmuir; 2018 Jan; 34(1):241-249. PubMed ID: 29192503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle motion within glassy polymer melts.
    Guo H; Bourret G; Corbierre MK; Rucareanu S; Lennox RB; Laaziri K; Piche L; Sutton M; Harden JL; Leheny RL
    Phys Rev Lett; 2009 Feb; 102(7):075702. PubMed ID: 19257691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium Brownian motion beyond the effective temperature.
    Gnoli A; Puglisi A; Sarracino A; Vulpiani A
    PLoS One; 2014; 9(4):e93720. PubMed ID: 24714671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Newtonian behavior in simple fluids.
    Delhommelle J; Petravic J; Evans DJ
    J Chem Phys; 2004 Apr; 120(13):6117-23. PubMed ID: 15267496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear thinning and shear dilatancy of liquid n-hexadecane via equilibrium and nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects.
    Tseng HC; Wu JS; Chang RY
    J Chem Phys; 2008 Jul; 129(1):014502. PubMed ID: 18624478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium and nonequilibrium dynamics of soft sphere fluids.
    Ding Y; Mittal J
    Soft Matter; 2015 Jul; 11(26):5274-81. PubMed ID: 26052921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions, Structure, and Dynamics of Polymer-Tethered Nanoparticle Blends.
    Agrawal A; Wenning BM; Choudhury S; Archer LA
    Langmuir; 2016 Aug; 32(34):8698-708. PubMed ID: 27479587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow.
    Fedosov DA; Karniadakis GE; Caswell B
    J Chem Phys; 2010 Apr; 132(14):144103. PubMed ID: 20405981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode-dependent nonequilibrium temperature in aging systems.
    Garriga A; Ritort F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031505. PubMed ID: 16241442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic and heterogeneous dynamics in an aging colloidal gel.
    Jain A; Schulz F; Lokteva I; Frenzel L; Grübel G; Lehmkühler F
    Soft Matter; 2020 Mar; 16(11):2864-2872. PubMed ID: 32108204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical-mechanical theory of rheology: Lennard-Jones fluids.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Local and Average Particle Diffusivities of Inhomogeneous Fluids Depend on Microscopic Dynamics.
    Bollinger JA; Jain A; Truskett TM
    J Phys Chem B; 2015 Jul; 119(29):9103-13. PubMed ID: 25350488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Response of Newtonian and Non-Newtonian Fluids Subjected to Exothermic Reactions in Shear Flow.
    Chinyoka T
    Int J Appl Comput Math; 2021; 7(3):75. PubMed ID: 33937441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions.
    Híjar H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear thinning behavior of linear polymer melts under shear flow via nonequilibrium molecular dynamics.
    Xu X; Chen J; An L
    J Chem Phys; 2014 May; 140(17):174902. PubMed ID: 24811663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluids by design using chaotic surface waves to create a metafluid that is Newtonian, thermal, and entirely tunable.
    Welch KJ; Liebman-Peláez A; Corwin EI
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10807-12. PubMed ID: 27621467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.