These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35614813)

  • 1. Mapping Brittle and Ductile Behaviors of Polymeric Glasses under Large Extension.
    Li X; Wang SQ
    ACS Macro Lett; 2015 Oct; 4(10):1110-1113. PubMed ID: 35614813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.
    Wang SQ; Cheng S; Lin P; Li X
    J Chem Phys; 2014 Sep; 141(9):094905. PubMed ID: 25194392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illustrating the Molecular Origin of Mechanical Stress in Ductile Deformation of Polymer Glasses.
    Li X; Liu J; Liu Z; Tsige M; Wang SQ
    Phys Rev Lett; 2018 Feb; 120(7):077801. PubMed ID: 29542983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brittle-to-Ductile Transition in Metallic Glass Nanowires.
    Şopu D; Foroughi A; Stoica M; Eckert J
    Nano Lett; 2016 Jul; 16(7):4467-71. PubMed ID: 27248329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polystyrene Glasses under Compression: Ductile and Brittle Responses.
    Liu J; Lin P; Cheng S; Wang W; Mays JW; Wang SQ
    ACS Macro Lett; 2015 Oct; 4(10):1072-1076. PubMed ID: 35614806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand Tailoring between Brittle and Ductile of Poly(methyl methacrylate) (PMMA) via High Temperature Stretching.
    Wang C; Pek JX; Chen HM; Huang WM
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267810
    [No Abstract]   [Full Text] [Related]  

  • 7. Brittle-ductile transitions in a metallic glass.
    Langer JS
    Phys Rev E; 2020 Jun; 101(6-1):063004. PubMed ID: 32688555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chain Packing and Its Anomalous Effect on Mechanical Toughness for Poly(lactic acid).
    Huang T; Miura M; Nobukawa S; Yamaguchi M
    Biomacromolecules; 2015 May; 16(5):1660-6. PubMed ID: 25875749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture toughness of metallic glasses: annealing-induced embrittlement.
    Rycroft CH; Bouchbinder E
    Phys Rev Lett; 2012 Nov; 109(19):194301. PubMed ID: 23215386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical glass transition revealed by the fracture toughness of metallic glasses.
    Ketkaew J; Chen W; Wang H; Datye A; Fan M; Pereira G; Schwarz UD; Liu Z; Yamada R; Dmowski W; Shattuck MD; O'Hern CS; Egami T; Bouchbinder E; Schroers J
    Nat Commun; 2018 Aug; 9(1):3271. PubMed ID: 30115910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.
    Violay M; Heap MJ; Acosta M; Madonna C
    Sci Rep; 2017 Aug; 7(1):7705. PubMed ID: 28794474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dislocation-Governed Plastic Deformation and Fracture Toughness of Nanotwinned Magnesium.
    Zhou L; Guo YF
    Materials (Basel); 2015 Aug; 8(8):5250-5264. PubMed ID: 28793502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a Universal Gel Model with Volume Phase Transition.
    Manning GS
    Gels; 2020 Feb; 6(1):. PubMed ID: 32120904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Plasticity and Failure of Microscale Glass: Rate-Dependent Ductile-Brittle-Ductile Transition.
    Ramachandramoorthy R; Schwiedrzik J; Petho L; Guerra-Nuñez C; Frey D; Breguet JM; Michler J
    Nano Lett; 2019 Apr; 19(4):2350-2359. PubMed ID: 30811940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The brittle-ductile transition in active volcanoes.
    Parisio F; Vinciguerra S; Kolditz O; Nagel T
    Sci Rep; 2019 Jan; 9(1):143. PubMed ID: 30644429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Stress Induced Embrittlement of Metals.
    Udupa A; Sugihara T; Viswanathan K; Latanision RM; Chandrasekar S
    Nano Lett; 2021 Nov; 21(22):9502-9508. PubMed ID: 34726060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brittle and ductile yielding in soft materials.
    Kamani KM; Rogers SA
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2401409121. PubMed ID: 38776367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses.
    Jang D; Greer JR
    Nat Mater; 2010 Mar; 9(3):215-9. PubMed ID: 20139966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires.
    Cheng G; Zhang Y; Chang TH; Liu Q; Chen L; Lu WD; Zhu T; Zhu Y
    Nano Lett; 2019 Aug; 19(8):5327-5334. PubMed ID: 31314538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile plasticity in metallic glasses with pronounced β relaxations.
    Yu HB; Shen X; Wang Z; Gu L; Wang WH; Bai HY
    Phys Rev Lett; 2012 Jan; 108(1):015504. PubMed ID: 22304268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.