These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35614813)

  • 21. On the Fracture Behavior of a Creep Resistant 10% Cr Steel with High Boron and Low Nitrogen Contents at Low Temperatures.
    Mishnev R; Dudova N; Kaibyshev R; Belyakov A
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tensile plasticity in metallic glasses with pronounced β relaxations.
    Yu HB; Shen X; Wang Z; Gu L; Wang WH; Bai HY
    Phys Rev Lett; 2012 Jan; 108(1):015504. PubMed ID: 22304268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of the ductile and brittle behavior of titanium alloys in diamond cutting by applying a magnetic field.
    Yip WS; To S
    Sci Rep; 2019 Mar; 9(1):4056. PubMed ID: 30858486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular-Weight-Dependent Interplay of Brittle-to-Ductile Transition in High-Strain-Rate Cold Spray Deposition of Glassy Polymers.
    Gangineri Padmanaban A; Bacha TW; Muthulingam J; Haas FM; Stanzione JF; Koohbor B; Lee JH
    ACS Omega; 2022 Aug; 7(30):26465-26472. PubMed ID: 35936467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of material removal mechanisms and ductile-brittle transition zone of zirconia ceramics sintered at various temperatures.
    Ji M; Xu J; Li L; Yu D; Chen M; Geier N; El Mansori M
    J Mech Behav Biomed Mater; 2022 Jan; 125():104944. PubMed ID: 34740013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.
    Zioupos P; Hansen U; Currey JD
    J Biomech; 2008 Oct; 41(14):2932-9. PubMed ID: 18786670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body.
    Nawathe S; Yang H; Fields AJ; Bouxsein ML; Keaveny TM
    J Biomech; 2015 May; 48(7):1264-9. PubMed ID: 25828400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.
    Yuan CC; Xiang JF; Xi XK; Wang WH
    Phys Rev Lett; 2011 Dec; 107(23):236403. PubMed ID: 22182108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dilatancy induced ductile-brittle transition of shear band in metallic glasses.
    Zeng F; Jiang MQ; Dai LH
    Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170836. PubMed ID: 29740259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterocyclic methacrylates for clinical applications. I. Mechanical properties.
    Patel MP; Braden M
    Biomaterials; 1991 Sep; 12(7):645-8. PubMed ID: 1742407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical bounds for the influence of tissue-level ductility on the apparent-level strength of human trabecular bone.
    Nawathe S; Juillard F; Keaveny TM
    J Biomech; 2013 Apr; 46(7):1293-9. PubMed ID: 23497799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process.
    Kim GM; Lach R; Michler GH; Pötschke P; Albrecht K
    Nanotechnology; 2006 Feb; 17(4):963-72. PubMed ID: 21727367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defect-free and crystallinity-preserving ductile deformation in semiconducting Ag
    Misawa M; Hokyo H; Fukushima S; Shimamura K; Koura A; Shimojo F; Kalia RK; Nakano A; Vashishta P
    Sci Rep; 2022 Nov; 12(1):19458. PubMed ID: 36376359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanovoid formation and mechanics: a comparison of poly(dicyclopentadiene) and epoxy networks from molecular dynamics simulations.
    Elder RM; Knorr DB; Andzelm JW; Lenhart JL; Sirk TW
    Soft Matter; 2016 May; 12(19):4418-34. PubMed ID: 27087585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constitutive law and flow mechanism in diamond deformation.
    Yu X; Raterron P; Zhang J; Lin Z; Wang L; Zhao Y
    Sci Rep; 2012; 2():876. PubMed ID: 23166859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.
    Ramachandramoorthy R; Gao W; Bernal R; Espinosa H
    Nano Lett; 2016 Jan; 16(1):255-63. PubMed ID: 26540253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
    An G; Jeong SM; Park J
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2252-2257. PubMed ID: 29448756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brittle to ductile transition in densified silica glass.
    Yuan F; Huang L
    Sci Rep; 2014 May; 4():5035. PubMed ID: 24849328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.
    Luo J; Wang J; Bitzek E; Huang JY; Zheng H; Tong L; Yang Q; Li J; Mao SX
    Nano Lett; 2016 Jan; 16(1):105-13. PubMed ID: 26569137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fracture toughness of a metal-organic framework glass.
    To T; Sørensen SS; Stepniewska M; Qiao A; Jensen LR; Bauchy M; Yue Y; Smedskjaer MM
    Nat Commun; 2020 May; 11(1):2593. PubMed ID: 32444664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.