These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 35614980)
1. Hsian-Tsao ( Huang Y; Cai P; Su X; Zheng M; Chi W; Lin S; Huang Z; Qin S; Zeng S Front Nutr; 2022; 9():819319. PubMed ID: 35614980 [TBL] [Abstract][Full Text] [Related]
2. Corrigendum: Hsian-Tsao (Mesona chinensis Benth.) extract improves the thermal tolerance of Huang Y; Cai P; Su X; Zheng M; Chi W; Lin S; Huang Z; Qin S; Zeng S Front Nutr; 2022; 9():953463. PubMed ID: 36159498 [TBL] [Abstract][Full Text] [Related]
3. Changes in superoxide dismutase and catalase in aging heat-shocked Drosophila. Niedzwiecki A; Reveillaud I; Fleming JE Free Radic Res Commun; 1992; 17(6):355-67. PubMed ID: 1286836 [TBL] [Abstract][Full Text] [Related]
4. Curcumin supplementation increases survival and lifespan in Drosophila under heat stress conditions. Chen Y; Liu X; Jiang C; Liu L; Ordovas JM; Lai CQ; Shen L Biofactors; 2018 Nov; 44(6):577-587. PubMed ID: 30488487 [TBL] [Abstract][Full Text] [Related]
5. Apoptotic effects of hsian-tsao ( Yeh YH; Liang CY; Chen ML; Tsai FM; Lin YY; Lee MC; Wu JS; Kuo CY Food Sci Nutr; 2019 May; 7(5):1891-1898. PubMed ID: 31139404 [TBL] [Abstract][Full Text] [Related]
6. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. Sejerkilde M; Sørensen JG; Loeschcke V J Insect Physiol; 2003 Aug; 49(8):719-26. PubMed ID: 12880651 [TBL] [Abstract][Full Text] [Related]
7. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster. Sørensen JG; Loeschcke V; Kristensen TN J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086 [TBL] [Abstract][Full Text] [Related]
8. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies. Hu JT; Chen B; Li ZH J Insect Physiol; 2014 Aug; 67():105-13. PubMed ID: 24992713 [TBL] [Abstract][Full Text] [Related]
9. HoTDAM! An easy-to-use automated assay expands the inducible thermotolerance phenotype in Drosophila melanogaster: Heat hardening reduces motility. Rokusek B; Cheku S; Rokusek M; Waples CJ; Harshman L; Carlson KA Comp Biochem Physiol A Mol Integr Physiol; 2023 Dec; 286():111522. PubMed ID: 37742820 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome profiling reveals the strategy of thermal tolerance enhancement caused by heat-hardening in Mytilus coruscus. Dong Z; Li H; Wang Y; Lin S; Guo F; Zhao J; Yao R; Zhu L; Wang W; Buttino I; Qi P; Guo B Sci Total Environ; 2023 Dec; 903():165785. PubMed ID: 37499827 [TBL] [Abstract][Full Text] [Related]
11. The role of dietary chromium supplementation in relieving heat stress of juvenile blunt snout bream Megalobrama amblycephala. Liang H; Ge X; Xia D; Ren M; Mi H; Pan L Fish Shellfish Immunol; 2022 Jan; 120():23-30. PubMed ID: 34774732 [TBL] [Abstract][Full Text] [Related]
12. Male Drosophila melanogaster flies exposed to hypergravity at young age are protected against a non-lethal heat shock at middle age but not against behavioral impairments due to this shock. Le Bourg E; Toffin E; Massé A Biogerontology; 2004; 5(6):431-43. PubMed ID: 15609107 [TBL] [Abstract][Full Text] [Related]
13. Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. Sørensen JG; Loeschcke V J Insect Physiol; 2001 Nov; 47(11):1301-1307. PubMed ID: 12770182 [TBL] [Abstract][Full Text] [Related]
14. Effects of dietary hawthorn extract on growth performance, immune responses, growth- and immune-related genes expression of juvenile golden pompano (Trachinotus ovatus) and its susceptibility to Vibrio harveyi infection. Tan X; Sun Z; Huang Z; Zhou C; Lin H; Tan L; Xun P; Huang Q Fish Shellfish Immunol; 2017 Nov; 70():656-664. PubMed ID: 28927688 [TBL] [Abstract][Full Text] [Related]
15. Effects of heat stress on antioxidant status and immune function and expression of related genes in lambs. Shi L; Xu Y; Mao C; Wang Z; Guo S; Jin X; Yan S; Shi B Int J Biometeorol; 2020 Dec; 64(12):2093-2104. PubMed ID: 32833081 [TBL] [Abstract][Full Text] [Related]
16. Membrane lipid metabolism, heat shock response and energy costs mediate the interaction between acclimatization and heat-hardening response in the razor clam Sinonovacula constricta. Zhang W; Dong Y J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34499178 [TBL] [Abstract][Full Text] [Related]
17. Variation in the expression of Hsp70, the major heat-shock protein, and thermotolerance in larval and adult selection lines of Drosophila melanogaster. Lansing E; Justesen J; Loeschcke V J Therm Biol; 2000 Dec; 25(6):443-450. PubMed ID: 10880868 [TBL] [Abstract][Full Text] [Related]
18. HSP70 plays a role in the defense of acute and chronic heat stress in Mongolian gerbils (Meriones unguiculatus). Lou SL; Zhang XY; Wang DH J Therm Biol; 2019 Dec; 86():102452. PubMed ID: 31789240 [TBL] [Abstract][Full Text] [Related]
19. Expression of thermal tolerance genes in two Drosophila species with different acclimation capacities. Sørensen JG; Giribets MP; Tarrío R; Rodríguez-Trelles F; Schou MF; Loeschcke V J Therm Biol; 2019 Aug; 84():200-207. PubMed ID: 31466754 [TBL] [Abstract][Full Text] [Related]
20. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma. Udaka H; Ueda C; Goto SG J Insect Physiol; 2010 Dec; 56(12):1889-94. PubMed ID: 20713057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]