These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 35615014)

  • 1. Proteome-wide prediction and analysis of the
    Ren P; Yang X; Wang T; Hou Y; Zhang Z
    Comput Struct Biotechnol J; 2022; 20():2322-2331. PubMed ID: 35615014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of human-virus protein-protein interactions through a sequence embedding-based machine learning method.
    Yang X; Yang S; Li Q; Wuchty S; Zhang Z
    Comput Struct Biotechnol J; 2020; 18():153-161. PubMed ID: 31969974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS; Huang SH; Luo YC; Lin CY; Yang JM
    PLoS One; 2015; 10(1):e0116347. PubMed ID: 25602759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Conditional Protein Degradation System To Study Essential Gene Function in Cryptosporidium parvum.
    Choudhary HH; Nava MG; Gartlan BE; Rose S; Vinayak S
    mBio; 2020 Aug; 11(4):. PubMed ID: 32843543
    [No Abstract]   [Full Text] [Related]  

  • 5. Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods.
    Yang S; Li H; He H; Zhou Y; Zhang Z
    Brief Bioinform; 2019 Jan; 20(1):274-287. PubMed ID: 29028906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-wide assessment of human interactome as a source of capturing domain-motif and domain-domain interactions.
    Idrees S; Paudel KR
    J Cell Commun Signal; 2024 Mar; 18(1):e12014. PubMed ID: 38545252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Rezaei J; Hugo W; Gao S; Jin J; Fan M; Yong CH; Wozniak M; Wong L
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems.
    Oberstaller J; Pumpalova Y; Schieler A; Llinás M; Kissinger JC
    Nucleic Acids Res; 2014 Jul; 42(13):8271-84. PubMed ID: 24957599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular Identification and In Silico Characterization of Protein Phosphatase 2C (PP2C) of Cryptosporidium parvum.
    Gómez-Sandoval JN; Okhuysen P; Mondragón-Flores R; Escalona-Montaño AR; Aguirre-García MM
    Acta Parasitol; 2020 Sep; 65(3):704-715. PubMed ID: 32347536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction and characterization of protein-protein interaction networks in swine.
    Wang F; Liu M; Song B; Li D; Pei H; Guo Y; Huang J; Zhang D
    Proteome Sci; 2012 Jan; 10(1):2. PubMed ID: 22230699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of Cryptosporidium parvum Clec, a novel C-type lectin domain-containing mucin-like glycoprotein.
    Bhalchandra S; Ludington J; Coppens I; Ward HD
    Infect Immun; 2013 Sep; 81(9):3356-65. PubMed ID: 23817613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bioinformatics Approach to Identifying Potential Biomarkers for
    Sabir MJ; Low R; Hall N; Kamli MR; Malik MZ
    Vaccines (Basel); 2021 Dec; 9(12):. PubMed ID: 34960172
    [No Abstract]   [Full Text] [Related]  

  • 13. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PlaPPISite: a comprehensive resource for plant protein-protein interaction sites.
    Yang X; Yang S; Qi H; Wang T; Li H; Zhang Z
    BMC Plant Biol; 2020 Feb; 20(1):61. PubMed ID: 32028878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLiM-Enrich: computational assessment of protein-protein interaction data as a source of domain-motif interactions.
    Idrees S; Pérez-Bercoff Å; Edwards RJ
    PeerJ; 2018; 6():e5858. PubMed ID: 30402352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The unusual architecture and predicted function of the mitochondrion organelle in Cryptosporidium parvum and hominis species: the strong paradigm of the structure-function relationship.
    Putignani L
    Parassitologia; 2005 Jun; 47(2):217-25. PubMed ID: 16252476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomics reveals Cryptosporidium parvum manipulation of the host cell molecular expression and immune response.
    Li T; Liu H; Jiang N; Wang Y; Wang Y; Zhang J; Shen Y; Cao J
    PLoS Negl Trop Dis; 2021 Nov; 15(11):e0009949. PubMed ID: 34818332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CysQ of Cryptosporidium parvum, a Protozoa, May Have Been Acquired from Bacteria by Horizontal Gene Transfer.
    Lee JY; Kim S
    Genomics Inform; 2012 Mar; 10(1):9-15. PubMed ID: 23105923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putative cis-regulatory elements associated with heat shock genes activated during excystation of Cryptosporidium parvum.
    Cohn B; Manque P; Lara AM; Serrano M; Sheth N; Buck G
    PLoS One; 2010 Mar; 5(3):e9512. PubMed ID: 20209102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HVIDB: a comprehensive database for human-virus protein-protein interactions.
    Yang X; Lian X; Fu C; Wuchty S; Yang S; Zhang Z
    Brief Bioinform; 2021 Mar; 22(2):832-844. PubMed ID: 33515030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.