These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35615015)

  • 1. Complementarity of the residue-level protein function and structure predictions in human proteins.
    Biró B; Zhao B; Kurgan L
    Comput Struct Biotechnol J; 2022; 20():2223-2234. PubMed ID: 35615015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HybridRNAbind: prediction of RNA interacting residues across structure-annotated and disorder-annotated proteins.
    Zhang F; Li M; Zhang J; Kurgan L
    Nucleic Acids Res; 2023 Mar; 51(5):e25. PubMed ID: 36629262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the complementarity of the consensus-based disorder prediction.
    Peng Z; Kurgan L
    Pac Symp Biocomput; 2012; ():176-87. PubMed ID: 22174273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins.
    Zhang J; Ghadermarzi S; Kurgan L
    Bioinformatics; 2020 Sep; 36(18):4729-4738. PubMed ID: 32860044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection.
    Zhang F; Shi W; Zhang J; Zeng M; Li M; Kurgan L
    Bioinformatics; 2020 Dec; 36(Suppl_2):i735-i744. PubMed ID: 33381815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DEPICTER: Intrinsic Disorder and Disorder Function Prediction Server.
    Barik A; Katuwawala A; Hanson J; Paliwal K; Zhou Y; Kurgan L
    J Mol Biol; 2020 May; 432(11):3379-3387. PubMed ID: 31870849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains.
    Zhang J; Ma Z; Kurgan L
    Brief Bioinform; 2019 Jul; 20(4):1250-1268. PubMed ID: 29253082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QUARTERplus: Accurate disorder predictions integrated with interpretable residue-level quality assessment scores.
    Katuwawala A; Ghadermarzi S; Hu G; Wu Z; Kurgan L
    Comput Struct Biotechnol J; 2021; 19():2597-2606. PubMed ID: 34025946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepPRObind: Modular Deep Learner that Accurately Predicts Structure and Disorder-Annotated Protein Binding Residues.
    Zhang F; Li M; Zhang J; Shi W; Kurgan L
    J Mol Biol; 2023 Jul; 435(14):167945. PubMed ID: 36621533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DEPICTER2: a comprehensive webserver for intrinsic disorder and disorder function prediction.
    Basu S; Gsponer J; Kurgan L
    Nucleic Acids Res; 2023 Jul; 51(W1):W141-W147. PubMed ID: 37140058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. qNABpredict: Quick, accurate, and taxonomy-aware sequence-based prediction of content of nucleic acid binding amino acids.
    Wu Z; Basu S; Wu X; Kurgan L
    Protein Sci; 2023 Jan; 32(1):e4544. PubMed ID: 36519304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-silico prediction of disorder content using hybrid sequence representation.
    Mizianty MJ; Zhang T; Xue B; Zhou Y; Dunker AK; Uversky VN; Kurgan L
    BMC Bioinformatics; 2011 Jun; 12():245. PubMed ID: 21682902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio and homology based prediction of protein domains by recursive neural networks.
    Walsh I; Martin AJ; Mooney C; Rubagotti E; Vullo A; Pollastri G
    BMC Bioinformatics; 2009 Jun; 10():195. PubMed ID: 19558651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences.
    Zhang J; Ghadermarzi S; Katuwawala A; Kurgan L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput prediction of disordered moonlighting regions in protein sequences.
    Meng F; Kurgan L
    Proteins; 2018 Oct; 86(10):1097-1110. PubMed ID: 30099775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.