BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35615126)

  • 1.
    Wang C; Liu H; Huang L; Chen H; Lu X; Zhou B
    Front Plant Sci; 2022; 13():886131. PubMed ID: 35615126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis.
    Wang C; Lü P; Zhong S; Chen H; Zhou B
    Plant Cell Rep; 2017 Jan; 36(1):89-102. PubMed ID: 27682163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species and nitric oxide induce senescence of rudimentary leaves and the expression profiles of the related genes in
    Yang H; Kim HJ; Chen H; Lu Y; Lu X; Wang C; Zhou B
    Hortic Res; 2018; 5():23. PubMed ID: 29736248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species.
    Lu X; Kim H; Zhong S; Chen H; Hu Z; Zhou B
    BMC Genomics; 2014 Sep; 15(1):805. PubMed ID: 25239404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis.
    Lu X; Li J; Chen H; Hu J; Liu P; Zhou B
    Sci Rep; 2017 Aug; 7(1):10183. PubMed ID: 28860553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Transcriptomic Analysis Reveals a Regulatory Network of Oxidative Stress-Induced Flowering Signals Produced in Litchi Leaves.
    Lu X; Yu S; Lü P; Chen H; Zhong S; Zhou B
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32197528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide transcriptome analysis reveals the molecular mechanism of high temperature-induced floral abortion in Litchi chinensis.
    Liu H; Wang C; Chen H; Zhou B
    BMC Genomics; 2019 Feb; 20(1):127. PubMed ID: 30744557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.).
    Ding F; Zhang S; Chen H; Su Z; Zhang R; Xiao Q; Li H
    Plant Sci; 2015 Dec; 241():128-37. PubMed ID: 26706065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Genes Involved in Low Temperature-Induced Senescence of Panicle Leaf in
    Wang C; Liu H; Yu S; Chen H; Hu F; Zhan H; Pan X; Lao Y; Zhong S; Zhou B
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30717231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn.
    Liu WW; Kim HJ; Chen HB; Lu XY; Zhou BY
    Plant Cell Rep; 2013 Sep; 32(9):1361-72. PubMed ID: 23636664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LcNAC13 Physically Interacts with LcR1MYB1 to Coregulate Anthocyanin Biosynthesis-Related Genes during Litchi Fruit Ripening.
    Jiang G; Li Z; Song Y; Zhu H; Lin S; Huang R; Jiang Y; Duan X
    Biomolecules; 2019 Apr; 9(4):. PubMed ID: 30987337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox regulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi.
    Jiang G; Xiao L; Yan H; Zhang D; Wu F; Liu X; Su X; Dong X; Wang J; Duan X; Jiang Y
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt A):1140-1151. PubMed ID: 28188859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction.
    Zhang H; Shen J; Wei Y; Chen H
    BMC Genomics; 2017 May; 18(1):363. PubMed ID: 28486930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SOC1 gene plays an important role in regulating litchi flowering time.
    Shi Y; Zhang S; Gui Q; Qing H; Li M; Yi C; Guo H; Chen H; Xu J; Ding F
    Genomics; 2024 Mar; 116(2):110804. PubMed ID: 38307485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome, degradome and physiological analysis provide new insights into the mechanism of inhibition of litchi fruit senescence by melatonin.
    Zhang Z; Liu J; Huber DJ; Qu H; Yun Z; Li T; Jiang Y
    Plant Sci; 2021 Jul; 308():110926. PubMed ID: 34034874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foliar application of ethephon induces bud dormancy and affects gene expression of dormancy- and flowering-related genes in 'Mauritius' litchi (Litchi chinensis Sonn.).
    Cronje RB; Hajari E; Jonker A; Ratlapane IM; Huang X; Theron KI; Hoffman EW
    J Plant Physiol; 2022 Sep; 276():153768. PubMed ID: 35872424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process.
    Ding F; Zhang S; Chen H; Peng H; Lu J; He X; Pan J
    Genes Genomics; 2018 Sep; ():. PubMed ID: 30218346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Litchi Fruit LcNAC1 is a Target of LcMYC2 and Regulator of Fruit Senescence Through its Interaction with LcWRKY1.
    Jiang G; Yan H; Wu F; Zhang D; Zeng W; Qu H; Chen F; Tan L; Duan X; Jiang Y
    Plant Cell Physiol; 2017 Jun; 58(6):1075-1089. PubMed ID: 28419348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative effect of drought and low temperature on litchi (Litchi chinensis Sonn.) floral initiation revealed by dynamic genome-wide transcriptome analysis.
    Shen J; Xiao Q; Qiu H; Chen C; Chen H
    Sci Rep; 2016 Aug; 6():32005. PubMed ID: 27557749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional changes in litchi (Litchi chinensis Sonn.) inflorescences treated with uniconazole.
    Wei Y; Dong C; Zhang H; Zheng X; Shu B; Shi S; Li W
    PLoS One; 2017; 12(4):e0176053. PubMed ID: 28419137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.