BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35615546)

  • 1. SOC Estimation of Lithium-Ion Battery for Electric Vehicle Based on Deep Multilayer Perceptron.
    Li X; Jiang H; Guo S; Xu J; Li M; Liu X; Zhang X
    Comput Intell Neurosci; 2022; 2022():3920317. PubMed ID: 35615546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of Charge Estimation of Lithium-Ion Batteries Based on an Adaptive Iterative Extended Kalman Filter for AUVs.
    Fu Y; Zhai B; Shi Z; Liang J; Peng Z
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable and Accurate Estimation of SOC Using eXogenous Kalman Filter for Lithium-Ion Batteries.
    Lin Q; Li X; Tu B; Cao J; Zhang M; Xiang J
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Fusion Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on Improved Genetic Algorithm BP and Adaptive Extended Kalman Filter.
    Cao L; Shao C; Zhang Z; Cao S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State of charge estimation for lithium-ion battery based on whale optimization algorithm and multi-kernel relevance vector machine.
    Chen K; Zhou S; Liu K; Gao G; Wu G
    J Chem Phys; 2023 Mar; 158(10):104110. PubMed ID: 36922144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing state estimation for lithium-ion batteries with hysteresis through systematic extended Kalman filter tuning.
    Knox J; Blyth M; Hales A
    Sci Rep; 2024 May; 14(1):12472. PubMed ID: 38816427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Battery SOC Estimation Method Based on AFFRLS-EKF.
    Li M; Zhang Y; Hu Z; Zhang Y; Zhang J
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dual-Input Neural Network for Online State-of-Charge Estimation of the Lithium-Ion Battery throughout Its Lifetime.
    Qian C; Xu B; Xia Q; Ren Y; Yang D; Wang Z
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of Charge Estimation and Evaluation of Lithium Battery Using Kalman Filter Algorithms.
    Hu L; Hu R; Ma Z; Jiang W
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy.
    Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de MacĂȘdo EC
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Extended Kalman Filter Algorithm Based on Weighted Multi-Innovation and Weighted Maximum Correlation Entropy Criterion for Co-Estimation of Battery SOC and Capacity.
    Lei M; Wu B; Yang W; Li P; Xu J; Yang Y
    ACS Omega; 2023 May; 8(17):15564-15585. PubMed ID: 37151547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State of charge estimation of vanadium redox battery based on improved extended Kalman filter.
    Qiu Y; Li X; Chen W; Duan ZM; Yu L
    ISA Trans; 2019 Nov; 94():326-337. PubMed ID: 31056216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State of charge estimation of ultracapacitor based on forgetting factor recursive least square and extended Kalman filter algorithm at full temperature range.
    Ren J; Xu Y; Zhang H; Yang F; Yang Y; Wang X; Jin P; Huang D
    Heliyon; 2022 Nov; 8(11):e11146. PubMed ID: 36353179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks.
    Wang YC; Shao NC; Chen GW; Hsu WS; Wu SC
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques.
    Hannan MA; Lipu MSH; Hussain A; Ker PJ; Mahlia TMI; Mansor M; Ayob A; Saad MH; Dong ZY
    Sci Rep; 2020 Mar; 10(1):4687. PubMed ID: 32170100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter.
    Yang S; Zhou S; Hua Y; Zhou X; Liu X; Pan Y; Ling H; Wu B
    Sci Rep; 2021 Mar; 11(1):5805. PubMed ID: 33707575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving accuracy in state of health estimation for lithium batteries using gradient-based optimization: Case study in electric vehicle applications.
    El Marghichi M; Dangoury S; Zahrou Y; Loulijat A; Chojaa H; Banakhr FA; Mosaad MI
    PLoS One; 2023; 18(11):e0293753. PubMed ID: 37917753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SOC estimation of lead-carbon battery based on GA-MIUKF algorithm.
    Wang L; Wang F; Xu L; Li W; Tang J; Wang Y
    Sci Rep; 2024 Feb; 14(1):3347. PubMed ID: 38336954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State of Charge Estimation of Li-Ion Battery Based on Adaptive Sliding Mode Observer.
    Wang Q; Jiang J; Gao T; Ren S
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.