These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35616128)

  • 1. Phase transition modulation and biophysical characterization of biomolecular condensates using microfluidics.
    Chan KWY; Navi M; Kieda J; Moran T; Hammers D; Lee S; Tsai SSH
    Lab Chip; 2022 Jul; 22(14):2647-2656. PubMed ID: 35616128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates.
    Fonin AV; Antifeeva IA; Kuznetsova IM; Turoverov KK; Zaslavsky BY; Kulkarni P; Uversky VN
    Essays Biochem; 2022 Dec; 66(7):831-847. PubMed ID: 36350034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).
    Sehgal PB; Westley J; Lerea KM; DiSenso-Browne S; Etlinger JD
    Anal Biochem; 2020 May; 597():113691. PubMed ID: 32194074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases.
    Ahmad A; Uversky VN; Khan RH
    Int J Biol Macromol; 2022 Nov; 220():703-720. PubMed ID: 35998851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological colloids: Unique properties of membraneless organelles in the cell.
    Bratek-Skicki A; Van Nerom M; Maes D; Tompa P
    Adv Colloid Interface Sci; 2022 Dec; 310():102777. PubMed ID: 36279601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifaceted Cargo Recruitment and Release from Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Zhang T; Lam JWY; Tang BZ; Chau Y
    Small; 2022 Jun; 18(25):e2201721. PubMed ID: 35596607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating liquid-liquid phase separation of FUS: mechanisms and strategies.
    Ji Y; Li F; Qiao Y
    J Mater Chem B; 2022 Nov; 10(42):8616-8628. PubMed ID: 36268634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle.
    Di Nunzio F; Uversky VN; Mouland AJ
    Retrovirology; 2023 Apr; 20(1):4. PubMed ID: 37029379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Chau Y
    ACS Macro Lett; 2022 Apr; 11(4):562-567. PubMed ID: 35575335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms and regulation underlying membraneless organelle plasticity control.
    Ismail H; Liu X; Yang F; Li J; Zahid A; Dou Z; Liu X; Yao X
    J Mol Cell Biol; 2021 Aug; 13(4):239-258. PubMed ID: 33914074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RPS: a comprehensive database of RNAs involved in liquid-liquid phase separation.
    Liu M; Li H; Luo X; Cai J; Chen T; Xie Y; Ren J; Zuo Z
    Nucleic Acids Res; 2022 Jan; 50(D1):D347-D355. PubMed ID: 34718734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A guide to regulation of the formation of biomolecular condensates.
    Bratek-Skicki A; Pancsa R; Meszaros B; Van Lindt J; Tompa P
    FEBS J; 2020 May; 287(10):1924-1935. PubMed ID: 32080961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein phase separation and its role in chromatin organization and diseases.
    Li J; Zhang Y; Chen X; Ma L; Li P; Yu H
    Biomed Pharmacother; 2021 Jun; 138():111520. PubMed ID: 33765580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in the phase separation-organized membraneless organelles in cells: a narrative review.
    Li W; Jiang C; Zhang E
    Transl Cancer Res; 2021 Nov; 10(11):4929-4946. PubMed ID: 35116344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Getting Closer to Decrypting the Phase Transitions of Bacterial Biomolecules.
    Sołtys K; Tarczewska A; Bystranowska D; Sozańska N
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant phase separation and cancer.
    Taniue K; Akimitsu N
    FEBS J; 2022 Jan; 289(1):17-39. PubMed ID: 33583140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Implications of Phase Separation in Cancer.
    Ren J; Zhang Z; Zong Z; Zhang L; Zhou F
    Adv Sci (Weinh); 2022 Nov; 9(31):e2202855. PubMed ID: 36117111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological, Pathological, and Targetable Membraneless Organelles in Neurons.
    Ryan VH; Fawzi NL
    Trends Neurosci; 2019 Oct; 42(10):693-708. PubMed ID: 31493925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease.
    Rai SK; Savastano A; Singh P; Mukhopadhyay S; Zweckstetter M
    Protein Sci; 2021 Jul; 30(7):1294-1314. PubMed ID: 33930220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.