These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35616163)

  • 1. New Mechanism for Long Photo-Induced Enhanced Raman Spectroscopy in Au Nanoparticles Embedded in TiO
    Brognara A; Bricchi BR; William L; Brinza O; Konstantakopoulou M; Bassi AL; Ghidelli M; Lidgi-Guigui N
    Small; 2022 Jun; 18(25):e2201088. PubMed ID: 35616163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen Vacancy Dynamics in Highly Crystalline Zinc Oxide Film Investigated by PIERS Effect.
    Barbillon G
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly crystalline ZnO film decorated with gold nanospheres for PIERS chemical sensing.
    Barbillon G; Noblet T; Humbert C
    Phys Chem Chem Phys; 2020 Sep; 22(37):21000-21004. PubMed ID: 32959825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy.
    Man T; Lai W; Xiao M; Wang X; Chandrasekaran AR; Pei H; Li L
    Biosens Bioelectron; 2020 Jan; 147():111742. PubMed ID: 31672389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances and perspectives in photo-induced enhanced Raman spectroscopy.
    Zhao J; Wang Z; Lan J; Khan I; Ye X; Wan J; Fei Y; Huang S; Li S; Kang J
    Nanoscale; 2021 May; 13(19):8707-8721. PubMed ID: 33960340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale Synergetic Effects on Ag-TiO
    Shondo J; Veziroglu S; Tjardts T; Sarwar TB; Mishra YK; Faupel F; Aktas OC
    Small; 2022 Dec; 18(50):e2203861. PubMed ID: 36135727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of Photo-Induced Surface Oxygen Vacancies in Metal-Oxide Semiconductors Studied Under Ambient Conditions.
    Glass D; Cortés E; Ben-Jaber S; Brick T; Peveler WJ; Blackman CS; Howle CR; Quesada-Cabrera R; Parkin IP; Maier SA
    Adv Sci (Weinh); 2019 Nov; 6(22):1901841. PubMed ID: 31763155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive surface-enhanced Raman scattering of TiO
    Zhao X; Zhang W; Peng C; Liang Y; Wang W
    J Colloid Interface Sci; 2017 Dec; 507():370-377. PubMed ID: 28806656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The critical role of intragap states in the energy transfer from gold nanoparticles to TiO2.
    Naldoni A; Fabbri F; Altomare M; Marelli M; Psaro R; Selli E; Salviati G; Dal Santo V
    Phys Chem Chem Phys; 2015 Feb; 17(7):4864-9. PubMed ID: 25607570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cubic Silver Nanoparticles Fixed on TiO
    Ambroziak R; Hołdyński M; Płociński T; Pisarek M; Kudelski A
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light.
    Naraginti S; Thejaswini TV; Prabhakaran D; Sivakumar A; Satyanarayana VS; Arun Prasad AS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Oct; 149():571-9. PubMed ID: 25983059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot plasmonic electrons for generation of enhanced photocurrent in gold-TiO2 nanocomposites.
    Brennan LJ; Purcell-Milton F; Salmeron AS; Zhang H; Govorov AO; Fedorov AV; Gun'ko YK
    Nanoscale Res Lett; 2015; 10():38. PubMed ID: 25852335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-enhanced Raman imaging of TiO2 nanoparticles.
    Naumenko D; Snitka V; Snopok B; Arpiainen S; Lipsanen H
    Nanotechnology; 2012 Nov; 23(46):465703. PubMed ID: 23093208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconductor-driven "turn-off" surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water.
    Ji W; Wang Y; Tanabe I; Han X; Zhao B; Ozaki Y
    Chem Sci; 2015 Jan; 6(1):342-348. PubMed ID: 28694937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and mechanistic investigations of the light induced formation of gold nanoparticles on the surface of TiO2.
    Mohamed HH; Dillert R; Bahnemann DW
    Chemistry; 2012 Apr; 18(14):4314-21. PubMed ID: 22374869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Photochemical Properties of Monolithic TiO
    Zimbone M; Cantarella M; Impellizzeri G; Battiato S; Calcagno L
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34203577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weakened negative effect of Au/TiO
    Song K; Wang X; Xiang Q; Xu J
    Phys Chem Chem Phys; 2016 Oct; 18(42):29131-29138. PubMed ID: 27730242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO
    He W; Cai J; Jiang X; Yin JJ; Meng Q
    Phys Chem Chem Phys; 2018 Jun; 20(23):16117-16125. PubMed ID: 29855003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.