BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35616388)

  • 1. Dual-core coaxial bioprinting of double-channel constructs with a potential for perfusion and interaction of cells.
    Yu Y; Xie R; He Y; Zhao F; Zhang Q; Wang W; Zhang Y; Hu J; Luo D; Peng W
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35616388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sheet-based extrusion bioprinting: a new multi-material paradigm providing mid-extrusion micropatterning control for microvascular applications.
    Hooper R; Cummings C; Beck A; Vazquez-Armendariz J; Rodriguez C; Dean D
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications.
    Zhuang P; Ng WL; An J; Chua CK; Tan LP
    PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaxial Electrohydrodynamic Bioprinting of Pre-vascularized Cell-laden Constructs for Tissue Engineering.
    Mao M; Liang H; He J; Kasimu A; Zhang Y; Wang L; Li X; Li D
    Int J Bioprint; 2021; 7(3):362. PubMed ID: 34286149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
    Jia W; Gungor-Ozkerim PS; Zhang YS; Yue K; Zhu K; Liu W; Pi Q; Byambaa B; Dokmeci MR; Shin SR; Khademhosseini A
    Biomaterials; 2016 Nov; 106():58-68. PubMed ID: 27552316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs.
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Biofabrication; 2020 May; 12(3):035014. PubMed ID: 32155602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models.
    Shahabipour F; Tavafoghi M; Aninwene GE; Bonakdar S; Oskuee RK; Shokrgozar MA; Potyondy T; Alambeigi F; Ahadian S
    J Biomed Mater Res A; 2022 May; 110(5):1077-1089. PubMed ID: 35025130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery.
    Gao Q; He Y; Fu JZ; Liu A; Ma L
    Biomaterials; 2015 Aug; 61():203-15. PubMed ID: 26004235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Sacrificial Cell Spheroids for the Bioprinting of Perfusable 3D Tissue and Organ Constructs: A Computational Study.
    Robu A; Mironov V; Neagu A
    Comput Math Methods Med; 2019; 2019():7853586. PubMed ID: 31236128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directly coaxial bioprinting of 3D vascularized tissue using novel bioink based on decellularized human amniotic membrane.
    Heidari F; Saadatmand M; Simorgh S
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127041. PubMed ID: 37742904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing of cell-laden microporous constructs using blended bioinks.
    Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K
    J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocurable Biopolymers for Coaxial Bioprinting.
    Costantini M; Barbetta A; Swieszkowski W; Seliktar D; Gargioli C; Rainer A
    Methods Mol Biol; 2021; 2147():45-54. PubMed ID: 32840809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfusable Biohybrid Designs for Bioprinted Skeletal Muscle Tissue.
    Filippi M; Yasa O; Giachino J; Graf R; Balciunaite A; Stefani L; Katzschmann RK
    Adv Healthc Mater; 2023 Jul; 12(18):e2300151. PubMed ID: 36911914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.