These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35616995)

  • 41. Computational strategies for genome-based natural product discovery and engineering in fungi.
    van der Lee TAJ; Medema MH
    Fungal Genet Biol; 2016 Apr; 89():29-36. PubMed ID: 26775250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering Streptomyces sp. CPCC 204095 for the targeted high-level production of isatropolone A by elucidating its pathway-specific regulatory mechanism.
    Zhang C; Xu Q; Fu J; Wu L; Li Y; Lu Y; Shi Y; Sun H; Li X; Wang L; Hong B
    Microb Cell Fact; 2024 Apr; 23(1):113. PubMed ID: 38622698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cryptic piperazine derivatives activated by knocking out the global regulator LaeA in Aspergillus flavipes.
    Liu Y; Li P; Qi C; Zha Z; Meng J; Liu C; Han J; Zhou Q; Luo Z; Wang J; Zhu H; Ye Y; Chen C; Zhou Y; Zhang Y
    Bioorg Med Chem; 2024 Apr; 103():117685. PubMed ID: 38503009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Natural products from filamentous fungi and production by heterologous expression.
    Alberti F; Foster GD; Bailey AM
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):493-500. PubMed ID: 27966047
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterologous expression of bacterial natural product biosynthetic pathways.
    Huo L; Hug JJ; Fu C; Bian X; Zhang Y; Müller R
    Nat Prod Rep; 2019 Oct; 36(10):1412-1436. PubMed ID: 30620035
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products.
    Zarins-Tutt JS; Barberi TT; Gao H; Mearns-Spragg A; Zhang L; Newman DJ; Goss RJ
    Nat Prod Rep; 2016 Jan; 33(1):54-72. PubMed ID: 26538321
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biosynthetic pathway for the epipolythiodioxopiperazine acetylaranotin in Aspergillus terreus revealed by genome-based deletion analysis.
    Guo CJ; Yeh HH; Chiang YM; Sanchez JF; Chang SL; Bruno KS; Wang CC
    J Am Chem Soc; 2013 May; 135(19):7205-13. PubMed ID: 23586797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Guidelines for metabolomics-guided transposon mutagenesis for microbial natural product discovery.
    Covington BC; Seyedsayamdost MR
    Methods Enzymol; 2022; 665():305-323. PubMed ID: 35379440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterologous production of fungal natural products: Reconstitution of biosynthetic gene clusters in model host Aspergillus oryzae.
    Oikawa H
    Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(9):420-430. PubMed ID: 33177296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mining microbial genomes for new natural products and biosynthetic pathways.
    Challis GL
    Microbiology (Reading); 2008 Jun; 154(Pt 6):1555-1569. PubMed ID: 18524911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leveraging Microbial Genomes and Genomic Context for Chemical Discovery.
    Kountz DJ; Balskus EP
    Acc Chem Res; 2021 Jul; 54(13):2788-2797. PubMed ID: 34087065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recombineering facilitates the discovery of natural product biosynthetic pathways in Pseudomonas parafulva.
    Zheng W; Wang X; Chen Y; Dong Y; Zhou D; Liu R; Zhou H; Bian X; Wang H; Tu Q; Ravichandran V; Zhang Y; Li A; Fu J; Yin J
    Biotechnol J; 2021 Aug; 16(8):e2000575. PubMed ID: 33484238
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes.
    Robey MT; Caesar LK; Drott MT; Keller NP; Kelleher NL
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941694
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-guided discovery of diverse natural products from Burkholderia sp.
    Liu X; Cheng YQ
    J Ind Microbiol Biotechnol; 2014 Feb; 41(2):275-84. PubMed ID: 24212473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multifarious Elicitors: Invoking Biosynthesis of Various Bioactive Secondary Metabolite in Fungi.
    Bharatiya P; Rathod P; Hiray A; Kate AS
    Appl Biochem Biotechnol; 2021 Mar; 193(3):668-686. PubMed ID: 33135129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification and Characterization of Mycemycin Biosynthetic Gene Clusters in Streptomyces olivaceus FXJ8.012 and Streptomyces sp. FXJ1.235.
    Song F; Liu N; Liu M; Chen Y; Huang Y
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29558441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryptic Aspergillus nidulans antimicrobials.
    Giles SS; Soukup AA; Lauer C; Shaaban M; Lin A; Oakley BR; Wang CC; Keller NP
    Appl Environ Microbiol; 2011 Jun; 77(11):3669-75. PubMed ID: 21478304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An
    Chiang YM; Lin TS; Chang SL; Ahn G; Wang CCC
    ACS Synth Biol; 2021 Jan; 10(1):173-182. PubMed ID: 33375785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment.
    Low ZJ; Pang LM; Ding Y; Cheang QW; Le Mai Hoang K; Thi Tran H; Li J; Liu XW; Kanagasundaram Y; Yang L; Liang ZX
    Sci Rep; 2018 Jan; 8(1):1594. PubMed ID: 29371699
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite.
    Maglangit F; Fang Q; Kyeremeh K; Sternberg JM; Ebel R; Deng H
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31936318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.