These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35617118)

  • 1. Process-Specific Effects of Sulfate on CaCO
    Zhu Y; Gao Z; Lee B; Jun YS
    Environ Sci Technol; 2022 Jun; 56(12):9063-9074. PubMed ID: 35617118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate-Controlled Heterogeneous CaCO
    Zhu Y; Li Q; Kim D; Min Y; Lee B; Jun YS
    Environ Sci Technol; 2021 Jul; ():. PubMed ID: 34314155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial energies for heterogeneous nucleation of calcium carbonate on mica and quartz.
    Li Q; Fernandez-Martinez A; Lee B; Waychunas GA; Jun YS
    Environ Sci Technol; 2014 May; 48(10):5745-53. PubMed ID: 24730716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.
    Jun YS; Kim D; Neil CW
    Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio and metadynamics studies on the role of essential functional groups in biomineralization of calcium carbonate and environmental situations.
    Saharay M; Kirkpatrick RJ
    Phys Chem Chem Phys; 2014 Dec; 16(48):26843-54. PubMed ID: 25375213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping.
    Fernandez-Martinez A; Hu Y; Lee B; Jun YS; Waychunas GA
    Environ Sci Technol; 2013 Jan; 47(1):102-9. PubMed ID: 22646799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic synthesis of calcium carbonate under phenylalanine: Control of polymorph and morphology.
    Yang T; Fu J; Ma L; Du H; Yue X; Zhao B; Wang C
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111019. PubMed ID: 32994025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally abundant anions influence the nucleation, growth, Ostwald ripening, and aggregation of hydrous Fe(III) oxides.
    Hu Y; Lee B; Bell C; Jun YS
    Langmuir; 2012 May; 28(20):7737-46. PubMed ID: 22568400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization.
    Neira-Carrillo A; Acevedo DF; Miras MC; Barbero CA; Gebauer D; Cölfen H; Arias JL
    Langmuir; 2008 Nov; 24(21):12496-507. PubMed ID: 18839967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible embryos and precursors of crystalline nuclei of calcium carbonate observed by liquid-cell transmission electron microscopy.
    Kimura Y; Katsuno H; Yamazaki T
    Faraday Discuss; 2022 Jul; 235(0):81-94. PubMed ID: 35373793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials.
    Niu YQ; Liu JH; Aymonier C; Fermani S; Kralj D; Falini G; Zhou CH
    Chem Soc Rev; 2022 Sep; 51(18):7883-7943. PubMed ID: 35993776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution.
    Deng H; Wang S; Wang X; Du C; Shen X; Wang Y; Cui F
    Regen Biomater; 2015 Sep; 2(3):187-95. PubMed ID: 26814639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of CaCO
    Xu Y; Bao W; Ding H; Qu J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy.
    Smeets PJ; Cho KR; Kempen RG; Sommerdijk NA; De Yoreo JJ
    Nat Mater; 2015 Apr; 14(4):394-9. PubMed ID: 25622001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of nucleation and crystal growth of calcium carbonate by human lithostathine.
    Bernard JP; Adrich Z; Montalto G; De Caro A; De Reggi M; Sarles H; Dagorn JC
    Gastroenterology; 1992 Oct; 103(4):1277-84. PubMed ID: 1397886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical biomineralization of calcium carbonate regulated by silk microspheres.
    Zhang X; Fan Z; Lu Q; Huang Y; Kaplan DL; Zhu H
    Acta Biomater; 2013 Jun; 9(6):6974-80. PubMed ID: 23518477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary control by additives of the kinetics of amorphous CaCO3 mineralization at an organic interface: in-situ synchrotron x-ray observations.
    DiMasi E; Kwak SY; Amos FF; Olszta MJ; Lush D; Gower LB
    Phys Rev Lett; 2006 Jul; 97(4):045503. PubMed ID: 16907589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal control of calcium carbonate nucleation using mechanical deformations of elastic surfaces.
    Taylor JM; Konda A; Morin SA
    Soft Matter; 2020 Jul; 16(26):6038-6043. PubMed ID: 32568337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing heterogeneous nucleation of nanoscale pits and subsequent crystal shrinkage during Ostwald ripening of a metal phosphate.
    Chung SY; Kim YM; Choi SY; Kim JG
    ACS Nano; 2015 Jan; 9(1):327-35. PubMed ID: 25588182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of thin calcium carbonate films with aragonite and vaterite forms coexisting with polyacrylic acids and chitosan membranes.
    Wada N; Suda S; Kanamura K; Umegaki T
    J Colloid Interface Sci; 2004 Nov; 279(1):167-74. PubMed ID: 15380426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.