These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35617157)

  • 1. A yeast cell cycle model integrating stress, signaling, and physiology.
    Adler SO; Spiesser TW; Uschner F; Münzner U; Hahn J; Krantz M; Klipp E
    FEMS Yeast Res; 2022 Jun; 22(1):. PubMed ID: 35617157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells.
    Edwards MC; Liegeois N; Horecka J; DePinho RA; Sprague GF; Tyers M; Elledge SJ
    Genetics; 1997 Nov; 147(3):1063-76. PubMed ID: 9383053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cyclin-substrate docking by a G1 arrest signaling pathway and the Cdk inhibitor Far1.
    Pope PA; Bhaduri S; Pryciak PM
    Curr Biol; 2014 Jun; 24(12):1390-1396. PubMed ID: 24909323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transcriptome-wide analysis deciphers distinct roles of G1 cyclins in temporal organization of the yeast cell cycle.
    Teufel L; Tummler K; Flöttmann M; Herrmann A; Barkai N; Klipp E
    Sci Rep; 2019 Mar; 9(1):3343. PubMed ID: 30833602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches.
    Zhang T; Schmierer B; Novák B
    Open Biol; 2011 Nov; 1(3):110009. PubMed ID: 22645649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ubiquitin ligase SCFGrr1 is necessary for pheromone sensitivity in Saccharomyces cerevisiae.
    Schweitzer K; Cocklin R; Garrett L; Desai F; Goebl M
    Yeast; 2005 May; 22(7):553-64. PubMed ID: 15942932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle.
    Oehlen LJ; Cross FR
    Genes Dev; 1994 May; 8(9):1058-70. PubMed ID: 7926787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.
    Ball DA; Adames NR; Reischmann N; Barik D; Franck CT; Tyson JJ; Peccoud J
    Cell Cycle; 2013 Oct; 12(19):3203-18. PubMed ID: 24013422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clb3-centered regulations are recurrent across distinct parameter regions in minimal autonomous cell cycle oscillator designs.
    Mondeel TDGA; Ivanov O; Westerhoff HV; Liebermeister W; Barberis M
    NPJ Syst Biol Appl; 2020 Apr; 6(1):8. PubMed ID: 32245958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase.
    Measday V; Moore L; Retnakaran R; Lee J; Donoviel M; Neiman AM; Andrews B
    Mol Cell Biol; 1997 Mar; 17(3):1212-23. PubMed ID: 9032248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent quantitative multicomponent control of the G₁-S network by the stress-activated protein kinase Hog1 upon osmostress.
    Adrover MÀ; Zi Z; Duch A; Schaber J; González-Novo A; Jimenez J; Nadal-Ribelles M; Clotet J; Klipp E; Posas F
    Sci Signal; 2011 Sep; 4(192):ra63. PubMed ID: 21954289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From START to FINISH: the influence of osmotic stress on the cell cycle.
    Radmaneshfar E; Kaloriti D; Gustin MC; Gow NA; Brown AJ; Grebogi C; Romano MC; Thiel M
    PLoS One; 2013; 8(7):e68067. PubMed ID: 23874495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of a molecular model of the budding yeast cell cycle.
    Chen KC; Csikasz-Nagy A; Gyorffy B; Val J; Novak B; Tyson JJ
    Mol Biol Cell; 2000 Jan; 11(1):369-91. PubMed ID: 10637314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry.
    Bhaduri S; Valk E; Winters MJ; Gruessner B; Loog M; Pryciak PM
    Curr Biol; 2015 Feb; 25(3):316-325. PubMed ID: 25619768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the molecular mechanisms for cell-fate selection in budding yeast through mathematical modeling.
    Li Y; Yi M; Zou X
    Biophys J; 2013 May; 104(10):2282-94. PubMed ID: 23708368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.
    Vohradska E; Vohradsky J
    PLoS One; 2011 Apr; 6(4):e18827. PubMed ID: 21541341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How yeast coordinates metabolism, growth and division.
    Ewald JC
    Curr Opin Microbiol; 2018 Oct; 45():1-7. PubMed ID: 29334655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FAR1 is required for posttranscriptional regulation of CLN2 gene expression in response to mating pheromone.
    Valdivieso MH; Sugimoto K; Jahng KY; Fernandes PM; Wittenberg C
    Mol Cell Biol; 1993 Feb; 13(2):1013-22. PubMed ID: 8423774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramide signals for initiation of yeast mating-specific cell cycle arrest.
    Villasmil ML; Francisco J; Gallo-Ebert C; Donigan M; Liu HY; Brower M; Nickels JT
    Cell Cycle; 2016; 15(3):441-54. PubMed ID: 26726837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The G1 cyclin Cln3p controls vacuolar biogenesis in Saccharomyces cerevisiae.
    Han BK; Aramayo R; Polymenis M
    Genetics; 2003 Oct; 165(2):467-76. PubMed ID: 14573462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.