These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Abiri P; Abiri A; Packard RRS; Ding Y; Yousefi A; Ma J; Bersohn M; Nguyen KL; Markovic D; Moloudi S; Hsiai TK Sci Rep; 2017 Jul; 7(1):6180. PubMed ID: 28733677 [TBL] [Abstract][Full Text] [Related]
8. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Wang S; Cui Q; Abiri P; Roustaei M; Zhu E; Li YR; Wang K; Duarte S; Yang L; Ebrahimi R; Bersohn M; Chen J; Hsiai TK Sci Adv; 2023 Oct; 9(42):eadj0540. PubMed ID: 37851816 [TBL] [Abstract][Full Text] [Related]
9. A fully implantable pacemaker for the mouse: from battery to wireless power. Laughner JI; Marrus SB; Zellmer ER; Weinheimer CJ; MacEwan MR; Cui SX; Nerbonne JM; Efimov IR PLoS One; 2013; 8(10):e76291. PubMed ID: 24194832 [TBL] [Abstract][Full Text] [Related]
10. Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers. Lyu H; John M; Burkland D; Greet B; Post A; Babakhani A; Razavi M Sci Rep; 2020 Feb; 10(1):2067. PubMed ID: 32034237 [TBL] [Abstract][Full Text] [Related]
11. Advancements in Pacemaker Technology: The Leadless Device. Leier M Crit Care Nurse; 2017 Apr; 37(2):58-65. PubMed ID: 28365650 [TBL] [Abstract][Full Text] [Related]
12. Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants. Choe JK; Kim S; Lee AY; Choi C; Cho JH; Jo W; Song MH; Cha C; Kim J Adv Mater; 2024 May; 36(18):e2311154. PubMed ID: 38174953 [TBL] [Abstract][Full Text] [Related]
13. Atrioventricular sequential pacing using transesophageal atrial pacing in combination with a temporary DDD pacemaker for atrial tracking and ventricular pacing. Roth JV; Huertas R J Cardiothorac Vasc Anesth; 1995 Jun; 9(3):255-8. PubMed ID: 7669956 [TBL] [Abstract][Full Text] [Related]
14. Implant-to-implant wireless networking with metamaterial textiles. Tian X; Zeng Q; Kurt SA; Li RR; Nguyen DT; Xiong Z; Li Z; Yang X; Xiao X; Wu C; Tee BCK; Nikolayev D; Charles CJ; Ho JS Nat Commun; 2023 Jul; 14(1):4335. PubMed ID: 37468458 [TBL] [Abstract][Full Text] [Related]
15. A Sewing Approach to the Fabrication of Eco/bioresorbable Electronics. Wu Y; Rytkin E; Bimrose M; Li S; Choi YS; Lee G; Wang Y; Tang L; Madrid M; Wickerson G; Chang JK; Gu J; Zhang Y; Liu J; Tawfick S; Huang Y; King WP; Efimov IR; Rogers JA Small; 2023 Dec; 19(49):e2305017. PubMed ID: 37528504 [TBL] [Abstract][Full Text] [Related]
16. Implantable Electronic Medicine Enabled by Bioresorbable Microneedles for Wireless Electrotherapy and Drug Delivery. Huang Y; Li H; Hu T; Li J; Yiu CK; Zhou J; Li J; Huang X; Yao K; Qiu X; Zhou Y; Li D; Zhang B; Shi R; Liu Y; Wong TH; Wu M; Jia H; Gao Z; Zhang Z; He J; Zheng M; Song E; Wang L; Xu C; Yu X Nano Lett; 2022 Jul; 22(14):5944-5953. PubMed ID: 35816764 [TBL] [Abstract][Full Text] [Related]
17. Going wireless: the promise of leadless pacemakers. Tiny implants have the potential to normalize heart rhythms without the complications of traditional pacing devices. Heart Advis; 2015 Dec; 17(12):3. PubMed ID: 26685334 [No Abstract] [Full Text] [Related]
18. Leadless Cardiac Pacemakers: Current status of a modern approach in pacing. Sideris S; Archontakis S; Dilaveris P; Gatzoulis KA; Trachanas K; Sotiropoulos I; Arsenos P; Tousoulis D; Kallikazaros I Hellenic J Cardiol; 2017; 58(6):403-410. PubMed ID: 28529181 [TBL] [Abstract][Full Text] [Related]
19. Remote control of the heart and beyond. Zimmermann WH Science; 2022 May; 376(6596):917-918. PubMed ID: 35617399 [TBL] [Abstract][Full Text] [Related]
20. Optimizing single-chamber pacing in dogs. Part 2: Rate adaptive pacing. Moïse NS; Flanders WH; Flanders NH; Pariaut R Vet J; 2021 Jun; 272():105630. PubMed ID: 33674172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]