These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35617469)

  • 1. Analytical Approaches for the Segmentation of the Zebrafish Brain Vasculature.
    Kugler EC; Rampun A; Chico TJA; Armitage PA
    Curr Protoc; 2022 May; 2(5):e443. PubMed ID: 35617469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement and Segmentation Workflow for the Developing Zebrafish Vasculature.
    Kugler E; Plant K; Chico T; Armitage P
    J Imaging; 2019 Jan; 5(1):. PubMed ID: 34465714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-sample SPIM image acquisition, processing and analysis of vascular growth in zebrafish.
    Daetwyler S; Günther U; Modes CD; Harrington K; Huisken J
    Development; 2019 Mar; 146(6):. PubMed ID: 30824551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation.
    Phellan R; Forkert ND
    Med Phys; 2017 Nov; 44(11):5901-5915. PubMed ID: 28881037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish vascular quantification: a tool for quantification of three-dimensional zebrafish cerebrovascular architecture by automated image analysis.
    Kugler EC; Frost J; Silva V; Plant K; Chhabria K; Chico TJA; Armitage PA
    Development; 2022 Feb; 149(3):. PubMed ID: 35005771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Robust and Accurate Deep-learning-based Method for the Segmentation of Subcortical Brain: Cross-dataset Evaluation of Generalization Performance.
    Furuhashi N; Okuhata S; Kobayashi T
    Magn Reson Med Sci; 2021 Jun; 20(2):166-174. PubMed ID: 32389928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated contour extraction for light-sheet microscopy images of zebrafish embryos based on object edge detection algorithm.
    Kondow A; Ohnuma K; Taniguchi A; Sakamoto J; Asashima M; Kato K; Kamei Y; Nonaka S
    Dev Growth Differ; 2023 Aug; 65(6):311-320. PubMed ID: 37350158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation.
    Shi T; Jiang H; Zheng B
    Comput Methods Programs Biomed; 2020 Dec; 197():105678. PubMed ID: 32791449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic brain segmentation in Time-of-Flight MRA images.
    Forkert ND; Säring D; Fiehler J; Illies T; Möller D; Handels H
    Methods Inf Med; 2009; 48(5):399-407. PubMed ID: 19696951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient workflow for automatic segmentation of the right heart based on 2D echocardiography.
    Danilov VV; Skirnevskiy IP; Gerget OM; Shelomentcev EE; Kolpashchikov DY; Vasilyev NV
    Int J Cardiovasc Imaging; 2018 Jul; 34(7):1041-1055. PubMed ID: 29428969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.
    Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A
    Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net.
    Ilhan A; Sekeroglu B; Abiyev R
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):589-600. PubMed ID: 35092598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conventional-to-spectral CT image translation augmentation workflow for robust contrast injection-independent organ segmentation.
    Lartaud PJ; Dupont C; Hallé D; Schleef A; Dessouky R; Vlachomitrou AS; Rouet JM; Nempont O; Boussel L
    Med Phys; 2022 Feb; 49(2):1108-1122. PubMed ID: 34689353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADR-Net: Context extraction network based on M-Net for medical image segmentation.
    Ji L; Jiang X; Gao Y; Fang Z; Cai Q; Wei Z
    Med Phys; 2020 Sep; 47(9):4254-4264. PubMed ID: 32602963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.