These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35617810)

  • 1. Simulation of the FDA nozzle benchmark: A lattice Boltzmann study.
    Huang F; Noël R; Berg P; Hosseini SA
    Comput Methods Programs Biomed; 2022 Jun; 221():106863. PubMed ID: 35617810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of the FDA nozzle benchmark and the lattice Boltzmann method for the analysis of biomedical flows in transitional regime.
    Jain K
    Med Biol Eng Comput; 2020 Aug; 58(8):1817-1830. PubMed ID: 32507933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.
    Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB
    Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of turbulence on transitional flow in the FDA's benchmark nozzle model using large-eddy simulation.
    Manchester EL; Xu XY
    Int J Numer Method Biomed Eng; 2020 Oct; 36(10):e3389. PubMed ID: 32738822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering: A comprehensive LES study of the FDA benchmark nozzle model.
    Fehn N; Wall WA; Kronbichler M
    Int J Numer Method Biomed Eng; 2019 Dec; 35(12):e3228. PubMed ID: 31232525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central moments multiple relaxation time LBM for hemodynamic simulations in intracranial aneurysms: An in-vitro validation study using PIV and PC-MRI.
    Hosseini SA; Berg P; Huang F; Roloff C; Janiga G; Thévenin D
    Comput Biol Med; 2021 Apr; 131():104251. PubMed ID: 33581475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500.
    Janiga G
    Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann Solver for Multiphase Flows: Application to High Weber and Reynolds Numbers.
    Hosseini SA; Safari H; Thevenin D
    Entropy (Basel); 2021 Jan; 23(2):. PubMed ID: 33573067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Prediction of Thrombosis in Food and Drug Administration's Benchmark Nozzle.
    Qiao Y; Luo K; Fan J
    Front Physiol; 2022; 13():867613. PubMed ID: 35547578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers.
    Fakhari A; Lee T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023304. PubMed ID: 23496636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The FDA nozzle benchmark: "In theory there is no difference between theory and practice, but in practice there is".
    Bergersen AW; Mortensen M; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2019 Jan; 35(1):e3150. PubMed ID: 30211982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of non-Newtonian blood modeling and pulsatility on hemodynamics in the food and drug administration's benchmark nozzle model.
    Good BC
    Biorheology; 2023; 59(1-2):1-18. PubMed ID: 34924367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transitional hemodynamics in intracranial aneurysms - Comparative velocity investigations with high resolution lattice Boltzmann simulations, normal resolution ANSYS simulations, and MR imaging.
    Jain K; Jiang J; Strother C; Mardal KA
    Med Phys; 2016 Nov; 43(11):6186. PubMed ID: 27806613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of blood flow in arteries with aneurysm: Lattice Boltzmann Approach (LBM).
    Afrouzi HH; Ahmadian M; Hosseini M; Arasteh H; Toghraie D; Rostami S
    Comput Methods Programs Biomed; 2020 Apr; 187():105312. PubMed ID: 31978870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Reynolds number turbulence modeling of blood flow in arterial stenoses.
    Ghalichi F; Deng X; De Champlain A; Douville Y; King M; Guidoin R
    Biorheology; 1998; 35(4-5):281-94. PubMed ID: 10474655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.