These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35617813)

  • 1. Cognitive control, motivation and fatigue: A cognitive neuroscience perspective.
    Kok A
    Brain Cogn; 2022 Jul; 160():105880. PubMed ID: 35617813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allocating Mental Effort in Cognitive Tasks: A Model of Motivation in the ACT-R Cognitive Architecture.
    Yang YC; Stocco A
    Top Cogn Sci; 2024 Jan; 16(1):74-91. PubMed ID: 37986131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Subjective Value of Cognitive Effort is Encoded by a Domain-General Valuation Network.
    Westbrook A; Lamichhane B; Braver T
    J Neurosci; 2019 May; 39(20):3934-3947. PubMed ID: 30850512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine restores cognitive motivation in Parkinson's disease.
    McGuigan S; Zhou SH; Brosnan MB; Thyagarajan D; Bellgrove MA; Chong TT
    Brain; 2019 Mar; 142(3):719-732. PubMed ID: 30689734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mental fatigue correlates with depression of task-related network and augmented DMN activity but spares the reward circuit.
    Gergelyfi M; Sanz-Arigita EJ; Solopchuk O; Dricot L; Jacob B; Zénon A
    Neuroimage; 2021 Nov; 243():118532. PubMed ID: 34496289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits.
    Salamone JD; Correa M; Farrar A; Mingote SM
    Psychopharmacology (Berl); 2007 Apr; 191(3):461-82. PubMed ID: 17225164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-specific prioritization of reward and effort information: Novel insights from behavior and computational modeling.
    Vassena E; Deraeve J; Alexander WH
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):619-636. PubMed ID: 30607834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motivational fatigue: A neurocognitive framework for the impact of effortful exertion on subsequent motivation.
    Müller T; Apps MAJ
    Neuropsychologia; 2019 Feb; 123():141-151. PubMed ID: 29738794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease.
    Le Heron C; Plant O; Manohar S; Ang YS; Jackson M; Lennox G; Hu MT; Husain M
    Brain; 2018 May; 141(5):1455-1469. PubMed ID: 29672668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility.
    Goschke T; Bolte A
    Neuropsychologia; 2014 Sep; 62():403-23. PubMed ID: 25068705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational mechanisms underlying the dynamics of physical and cognitive fatigue.
    Matthews J; Pisauro MA; Jurgelis M; Müller T; Vassena E; Chong TT; Apps MAJ
    Cognition; 2023 Nov; 240():105603. PubMed ID: 37647742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine.
    Salamone JD; Correa M
    Behav Brain Res; 2002 Dec; 137(1-2):3-25. PubMed ID: 12445713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of anticipated reward in cognitive behavioral control.
    Watanabe M
    Curr Opin Neurobiol; 2007 Apr; 17(2):213-9. PubMed ID: 17336512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal dopamine D2 receptors regulate effort but not value-based decision making and alter the dopaminergic encoding of cost.
    Filla I; Bailey MR; Schipani E; Winiger V; Mezias C; Balsam PD; Simpson EH
    Neuropsychopharmacology; 2018 Oct; 43(11):2180-2189. PubMed ID: 30082890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal Dynamics of Sensorimotor Networks in Effort-Based Cost-Benefit Valuation: Early Emergence and Late Net Value Integration.
    Harris A; Lim SL
    J Neurosci; 2016 Jul; 36(27):7167-83. PubMed ID: 27383592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward, motivation and brain imaging in human healthy participants - A narrative review.
    Weinstein AM
    Front Behav Neurosci; 2023; 17():1123733. PubMed ID: 37035621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Motivation: Computational Models of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in Health and Disease.
    Vassena E; Deraeve J; Alexander WH
    J Cogn Neurosci; 2017 Oct; 29(10):1633-1645. PubMed ID: 28654358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroscientific model of motivational process.
    Kim SI
    Front Psychol; 2013; 4():98. PubMed ID: 23459598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Social Motivation in Schizophrenia: What's Effort Got to Do With It?
    Catalano LT; Green MF
    Schizophr Bull; 2023 Sep; 49(5):1127-1137. PubMed ID: 37354079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.