BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35617819)

  • 1. Melt electrowriting reinforced composite membrane for controlled drug release.
    Xu T; Gu J; Meng J; Du L; Kumar A; Xu H
    J Mech Behav Biomed Mater; 2022 Aug; 132():105277. PubMed ID: 35617819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.
    Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG
    J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior.
    Turner PR; Yoshida M; Ali MA; Cabral JD
    Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739
    [No Abstract]   [Full Text] [Related]  

  • 5. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior.
    Yoshida M; Turner PR; Ali MA; Cabral JD
    ACS Appl Bio Mater; 2021 Feb; 4(2):1319-1329. PubMed ID: 35014483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration.
    Wang Z; Wang H; Xiong J; Li J; Miao X; Lan X; Liu X; Wang W; Cai N; Tang Y
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112287. PubMed ID: 34474838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Shish-Kebab Structures Functionalizing Nanofibers for Controlled Drug Release and Improved Antithrombogenicity.
    Guo M; Wang X; Liu Y; Yu H; Dong J; Cui Z; Bai Z; Li K; Li Q
    Biomacromolecules; 2022 Mar; 23(3):1337-1349. PubMed ID: 35235295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the potential of melt electrowriting in regenerative dental medicine.
    Daghrery A; de Souza Araújo IJ; Castilho M; Malda J; Bottino MC
    Acta Biomater; 2023 Jan; 156():88-109. PubMed ID: 35026478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the bioactivity of melt electrowritten PLLA scaffold by convenient, green, and effective hydrophilic surface modification.
    Meng J; Boschetto F; Yagi S; Marin E; Adachi T; Chen X; Pezzotti G; Sakurai S; Sasaki S; Aoki T; Yamane H; Xu H
    Mater Sci Eng C Mater Biol Appl; 2022 Apr; 135():112686. PubMed ID: 35581096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration.
    Hewitt E; Mros S; McConnell M; Cabral JD; Ali A
    Biomed Mater; 2019 Aug; 14(5):055013. PubMed ID: 31318339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontium-Substituted Bioactive Glass/Polycaprolactone Microfibers.
    Paxton NC; Ren J; Ainsworth MJ; Solanki AK; Jones JR; Allenby MC; Stevens MM; Woodruff MA
    Macromol Rapid Commun; 2019 Jun; 40(11):e1900019. PubMed ID: 30932256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature.
    Thorsnes QS; Turner PR; Ali MA; Cabral JD
    Biomedicines; 2023 Nov; 11(12):. PubMed ID: 38137359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of Melt Electrowritten PCL Scaffolds Following Melt Processing and Plasma Surface Treatment.
    Paxton NC; Ho SWK; Tuten BT; Lipton-Duffin J; Woodruff MA
    Macromol Rapid Commun; 2021 Dec; 42(23):e2100433. PubMed ID: 34668263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding.
    Bolle ECL; Nicdao D; Dalton PD; Dargaville TR
    Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis.
    Brennan CM; Eichholz KF; Hoey DA
    Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Melt Electrowriting and Fused Deposition Modeling to Fabricate Hybrid Scaffolds Supportive of Accelerated Bone Regeneration.
    Eichholz KF; Pitacco P; Burdis R; Chariyev-Prinz F; Barceló X; Tornifoglio B; Paetzold R; Garcia O; Kelly DJ
    Adv Healthc Mater; 2024 Jan; 13(3):e2302057. PubMed ID: 37933556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting.
    Chung JHY; Sayyar S; Wallace GG
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.