BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35617925)

  • 1. Short- and long-latency components of the eCAP reveal different refractory properties.
    Dong Y; Briaire JJ; Christiaan Stronks H; Frijns JHM
    Hear Res; 2022 Jul; 420():108522. PubMed ID: 35617925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials.
    Dong Y; Briaire JJ; Stronks HC; Frijns JHM
    Ear Hear; 2023 Mar-Apr 01; 44(2):276-286. PubMed ID: 36253905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stimulus level on the temporal response properties of the auditory nerve in cochlear implants.
    Hughes ML; Laurello SA
    Hear Res; 2017 Aug; 351():116-129. PubMed ID: 28633960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.
    Ramekers D; Versnel H; Strahl SB; Klis SF; Grolman W
    Hear Res; 2015 Mar; 321():12-24. PubMed ID: 25582354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation and refractoriness of the electrically evoked compound action potential.
    Hey M; Müller-Deile J; Hessel H; Killian M
    Hear Res; 2017 Nov; 355():14-22. PubMed ID: 28947082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpeedCAP: An Efficient Method for Estimating Neural Activation Patterns Using Electrically Evoked Compound Action-Potentials in Cochlear Implant Users.
    Garcia C; Deeks JM; Goehring T; Borsetto D; Bance M; Carlyon RP
    Ear Hear; 2023 May-Jun 01; 44(3):627-640. PubMed ID: 36477611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of the Adaptation Recovery Function of the Auditory Nerve and Its Association With Advanced Age in Postlingually Deafened Adult Cochlear Implant Users.
    He S; Skidmore J; Carter BL
    Ear Hear; 2022 Sep-Oct 01; 43(5):1472-1486. PubMed ID: 35139051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the Functional Status of the Cochlear Nerve in Individual Cochlear Implant Users Using Machine Learning and Electrophysiological Measures.
    Skidmore J; Xu L; Chao X; Riggs WJ; Pellittieri A; Vaughan C; Ning X; Wang R; Luo J; He S
    Ear Hear; 2021; 42(1):180-192. PubMed ID: 32826505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: effects of stimulation at high rates.
    Haenggeli A; Zhang JS; Vischer MW; Pelizzone M; Rouiller EM
    Audiology; 1998; 37(6):353-71. PubMed ID: 9888192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the refractoriness of the electrically stimulated auditory nerve.
    Morsnowski A; Charasse B; Collet L; Killian M; Müller-Deile J
    Audiol Neurootol; 2006; 11(6):389-402. PubMed ID: 17008774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responsiveness of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency.
    He S; Shahsavarani BS; McFayden TC; Wang H; Gill KE; Xu L; Chao X; Luo J; Wang R; He N
    Ear Hear; 2018; 39(2):238-250. PubMed ID: 28678078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Pulse Polarity on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves.
    Xu L; Skidmore J; Luo J; Chao X; Wang R; Wang H; He S
    Ear Hear; 2020; 41(5):1306-1319. PubMed ID: 32141933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of GJB2 or SLC26A4 Gene Mutations on Neural Response of the Electrically Stimulated Auditory Nerve in Children.
    Luo J; Xu L; Chao X; Wang R; Pellittieri A; Bai X; Fan Z; Wang H; He S
    Ear Hear; 2020; 41(1):194-207. PubMed ID: 31124793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the temporal properties of human eCAPs through an iterative deconvolution model.
    Dong Y; Briaire JJ; Biesheuvel JD; Stronks HC; Frijns JHM
    Hear Res; 2020 Sep; 395():108037. PubMed ID: 32827881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation between auditory-nerve temporal responses and perceptual rate integration in cochlear implants.
    Hughes ML; Baudhuin JL; Goehring JL
    Hear Res; 2014 Oct; 316():44-56. PubMed ID: 25093283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Advanced Age on the Electrode-Neuron Interface in Cochlear Implant Users.
    Skidmore J; Carter BL; Riggs WJ; He S
    Ear Hear; 2022 Jul-Aug 01; 43(4):1300-1315. PubMed ID: 34935648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psychophysical versus physiological spatial forward masking and the relation to speech perception in cochlear implants.
    Hughes ML; Stille LJ
    Ear Hear; 2008 Jun; 29(3):435-52. PubMed ID: 18344869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically evoked compound action potential (ECAP) in cochlear implant children: Changes in auditory nerve response in first year of cochlear implant use.
    Telmesani LM; Said NM
    Int J Pediatr Otorhinolaryngol; 2016 Mar; 82():28-33. PubMed ID: 26857311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness.
    Botros A; Psarros C
    Ear Hear; 2010 Jun; 31(3):380-91. PubMed ID: 20090532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Interphase Gap on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves.
    He S; Xu L; Skidmore J; Chao X; Jeng FC; Wang R; Luo J; Wang H
    Ear Hear; 2020; 41(4):918-934. PubMed ID: 31688319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.