These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35618064)
1. Use of quasi-SMILES to build models based on quantitative results from experiments with nanomaterials. Toropov AA; Kjeldsen F; Toropova AP Chemosphere; 2022 Sep; 303(Pt 2):135086. PubMed ID: 35618064 [TBL] [Abstract][Full Text] [Related]
2. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials. Toropov AA; Rallo R; Toropova AP Curr Top Med Chem; 2015; 15(18):1837-44. PubMed ID: 25961527 [TBL] [Abstract][Full Text] [Related]
3. Quasi-SMILES as a basis to build up models of endpoints for nanomaterials. Toropova AP; Toropov AA Environ Technol; 2023 Dec; 44(28):4460-4467. PubMed ID: 35748421 [TBL] [Abstract][Full Text] [Related]
4. Quasi-SMILES: Self-consistent models for toxicity of organic chemicals to tadpoles. Toropov AA; Di Nicola MR; Toropova AP; Roncaglioni A; Dorne JLCM; Benfenati E Chemosphere; 2023 Jan; 312(Pt 1):137224. PubMed ID: 36375610 [TBL] [Abstract][Full Text] [Related]
5. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data. Toropova AP; Toropov AA J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422 [TBL] [Abstract][Full Text] [Related]
6. Ecosystem ecology: Models for acute toxicity of pesticides towards Daphnia magna. Cappelli CI; Toropov AA; Toropova AP; Benfenati E Environ Toxicol Pharmacol; 2020 Nov; 80():103459. PubMed ID: 32721590 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo-based quantitative structure-activity relationship models for toxicity of organic chemicals to Daphnia magna. Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Leszczynska D; Leszczynski J Environ Toxicol Chem; 2016 Nov; 35(11):2691-2697. PubMed ID: 27110865 [TBL] [Abstract][Full Text] [Related]
8. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES. Leone C; Bertuzzi EE; Toropova AP; Toropov AA; Benfenati E Chemosphere; 2018 Nov; 210():52-56. PubMed ID: 29986223 [TBL] [Abstract][Full Text] [Related]
9. Quasi-SMILES as a basis for the development of models for the toxicity of ZnO nanoparticles. Toropov AA; Toropova AP Sci Total Environ; 2021 Jun; 772():145532. PubMed ID: 33578164 [TBL] [Abstract][Full Text] [Related]
10. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368 [TBL] [Abstract][Full Text] [Related]
11. QSAR models for toxicity of organic substances to Daphnia magna built up by using the CORAL freeware. Toropova AP; Toropov AA; Benfenati E; Gini G Chem Biol Drug Des; 2012 Mar; 79(3):332-8. PubMed ID: 22136580 [TBL] [Abstract][Full Text] [Related]
12. Quasi-SMILES for predicting toxicity of Nano-mixtures to Daphnia Magna. Toropova AP; Toropov AA; Fjodorova N NanoImpact; 2022 Oct; 28():100427. PubMed ID: 36113716 [TBL] [Abstract][Full Text] [Related]
14. Development of a Quasi-Quantitative Structure-Activity Relationship Model for Prediction of the Immobilization Response of Daphnia magna Exposed to Metal-Based Nanomaterials. Bunmahotama W; Vijver MG; Peijnenburg W Environ Toxicol Chem; 2022 Jun; 41(6):1439-1450. PubMed ID: 35234298 [TBL] [Abstract][Full Text] [Related]
15. Prediction of antimicrobial activity of large pool of peptides using quasi-SMILES. Toropova AP; Toropov AA; Benfenati E; Leszczynska D; Leszczynski J Biosystems; 2018 Jul; 169-170():5-12. PubMed ID: 29800627 [TBL] [Abstract][Full Text] [Related]
16. Does the Index of Ideality of Correlation Detect the Better Model Correctly? Toropova AP; Toropov AA Mol Inform; 2019 Aug; 38(8-9):e1800157. PubMed ID: 30725522 [TBL] [Abstract][Full Text] [Related]
17. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment. Toropova AP; Toropov AA Sci Total Environ; 2022 Jun; 823():153747. PubMed ID: 35149067 [TBL] [Abstract][Full Text] [Related]
18. The system of self-consistent models for pesticide toxicity to Toropov AA; Toropova AP; Roncaglioni A; Benfenati E Toxicol Mech Methods; 2023 Sep; 33(7):578-583. PubMed ID: 36992571 [TBL] [Abstract][Full Text] [Related]
19. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES. Toropova AP; Toropov AA; Fjodorova N Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768396 [TBL] [Abstract][Full Text] [Related]
20. Prediction of retention characteristics of heterocyclic compounds. Nesměrák K; Toropov AA; Toropova AP; Yildiz I; Yalcin I; Brozikova M; Klimešová V; Waisser K Anal Bioanal Chem; 2015 Dec; 407(30):9185-9. PubMed ID: 26427498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]