BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35618114)

  • 21. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape.
    Vasconcelos HL; Laurance WF
    Oecologia; 2005 Jul; 144(3):456-62. PubMed ID: 15942762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests.
    Xia M; Talhelm AF; Pregitzer KS
    New Phytol; 2015 Nov; 208(3):715-26. PubMed ID: 26073624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.
    Kotowska MM; Leuschner C; Triadiati T; Hertel D
    Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [C:N:P stoichiometry of leaves and fine roots in typical forest swamps of the Greater Hinggan Mountains, China].
    Liu XY; Hu YK
    Ying Yong Sheng Tai Xue Bao; 2020 Oct; 31(10):3385-3394. PubMed ID: 33314828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetric effects between tree and understorey litters on mixed litter decomposition in temperate Quercus variabilis forest.
    Liu Y; Tian H; Liu S; Li G; Hu X
    Sci Total Environ; 2022 Feb; 806(Pt 4):150939. PubMed ID: 34655623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tree species effects on decomposition and forest floor dynamics in a common garden.
    Hobbie SE; Reich PB; Oleksyn J; Ogdahl M; Zytkowiak R; Hale C; Karolewski P
    Ecology; 2006 Sep; 87(9):2288-97. PubMed ID: 16995629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nutrient dynamics within amazonian forests : II. Fine root growth, nutrient availability and leaf litter decomposition.
    Cuevas E; Medina E
    Oecologia; 1988 Jul; 76(2):222-235. PubMed ID: 28312200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.
    Wood TE; Lawrence D; Clark DA; Chazdon RL
    Ecology; 2009 Jan; 90(1):109-21. PubMed ID: 19294918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine-root decomposition characteristics of four typical shrubs in sandy areas of an arid and semiarid alpine region in western China.
    He LX; Jia ZQ; Li QX; Feng LL; Yang KY
    Ecol Evol; 2019 May; 9(9):5407-5419. PubMed ID: 31110689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Litter decomposition and nutrient release are faster under secondary forests than under Chinese fir plantations with forest development.
    Li S; Xu Z; Yu Z; Fu Y; Su X; Zou B; Wang S; Huang Z; Wan X
    Sci Rep; 2023 Oct; 13(1):16805. PubMed ID: 37798470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of Soil Meso- and Microfauna to Nutrient Release During Broadleaved Tree Litter Decomposition in the Changbai Mountains.
    Qiu L; Yin X; Jiang Y
    Environ Entomol; 2019 Apr; 48(2):395-403. PubMed ID: 30715338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems.
    Liu J; Fang X; Deng Q; Han T; Huang W; Li Y
    Sci Rep; 2015 Jan; 5():7952. PubMed ID: 25608664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America.
    Vivanco L; Austin AT
    Oecologia; 2006 Nov; 150(1):97-107. PubMed ID: 16917779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Responses of Fine Roots at Different Soil Depths to Different Thinning Intensities in a Secondary Forest in the Qinling Mountains, China.
    Pang Y; Tian J; Yang H; Zhang K; Wang D
    Biology (Basel); 2022 Feb; 11(3):. PubMed ID: 35336725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Response of nutrient release and ecological stoichiometry of litter to simulated nitrogen deposition in evergreen broad-leaved forest in central Yunnan, China].
    Zheng XR; Song YL; Wang KQ; Zhang YJ; Pan Y
    Ying Yong Sheng Tai Xue Bao; 2021 Jan; 32(1):23-30. PubMed ID: 33477209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Litter type control on soil C and N stabilization dynamics in a temperate forest.
    Hatton PJ; Castanha C; Torn MS; Bird JA
    Glob Chang Biol; 2015 Mar; 21(3):1358-67. PubMed ID: 25358112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests.
    Keller AB; Phillips RP
    New Phytol; 2019 Apr; 222(1):556-564. PubMed ID: 30299541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effects of root growth on dynamics of microbes and enzyme activities during litter decomposition.].
    Hu K; Tao JP; He DN; Huang K; Wang W
    Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):1993-2001. PubMed ID: 31257772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica).
    Jacob M; Viedenz K; Polle A; Thomas FM
    Oecologia; 2010 Dec; 164(4):1083-94. PubMed ID: 20596729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.