These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35618127)

  • 1. Probabilistic forecasting of remotely sensed cropland vegetation health and its relevance for food security.
    Hammad AT; Falchetta G
    Sci Total Environ; 2022 Sep; 838(Pt 2):156157. PubMed ID: 35618127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neglected role of abandoned cropland in supporting both food security and climate change mitigation.
    Zheng Q; Ha T; Prishchepov AV; Zeng Y; Yin H; Koh LP
    Nat Commun; 2023 Sep; 14(1):6083. PubMed ID: 37770491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Case study on climate change effects and food security in Southeast Asia.
    Taniushkina D; Lukashevich A; Shevchenko V; Belalov IS; Sotiriadi N; Narozhnaia V; Kovalev K; Krenke A; Lazarichev N; Bulkin A; Maximov Y
    Sci Rep; 2024 Jul; 14(1):16150. PubMed ID: 38997290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-level vegetation health index forecasting: A ConvLSTM study using MODIS Time Series.
    Kartal S; Iban MC; Sekertekin A
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18932-18948. PubMed ID: 38353824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate Change Policies in 16 West African Countries: A Systematic Review of Adaptation with a Focus on Agriculture, Food Security, and Nutrition.
    Sorgho R; Quiñonez CAM; Louis VR; Winkler V; Dambach P; Sauerborn R; Horstick O
    Int J Environ Res Public Health; 2020 Nov; 17(23):. PubMed ID: 33265971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change effects on agriculture: economic responses to biophysical shocks.
    Nelson GC; Valin H; Sands RD; Havlík P; Ahammad H; Deryng D; Elliott J; Fujimori S; Hasegawa T; Heyhoe E; Kyle P; Von Lampe M; Lotze-Campen H; Mason d'Croz D; van Meijl H; van der Mensbrugghe D; Müller C; Popp A; Robertson R; Robinson S; Schmid E; Schmitz C; Tabeau A; Willenbockel D
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3274-9. PubMed ID: 24344285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for probabilistic weather forecast post-processing across models and lead times using machine learning.
    Kirkwood C; Economou T; Odbert H; Pugeault N
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200099. PubMed ID: 33583271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making.
    Parker L; Bourgoin C; Martinez-Valle A; Läderach P
    PLoS One; 2019; 14(3):e0213641. PubMed ID: 30917146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice.
    Hansen JW
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2037-47. PubMed ID: 16433092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting future global food demand: A systematic review and meta-analysis of model complexity.
    Flies EJ; Brook BW; Blomqvist L; Buettel JC
    Environ Int; 2018 Nov; 120():93-103. PubMed ID: 30075374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A long-term forecast analysis on worldwide land uses.
    Zhang W; Qi Y; Zhang Z
    Environ Monit Assess; 2006 Aug; 119(1-3):609-20. PubMed ID: 16741808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change, crop yields, and undernutrition: development of a model to quantify the impact of climate scenarios on child undernutrition.
    Lloyd SJ; Kovats RS; Chalabi Z
    Environ Health Perspect; 2011 Dec; 119(12):1817-23. PubMed ID: 21844000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De-climatizing food security: Lessons from climate change micro-simulations in Peru.
    Anríquez G; Toledo G
    PLoS One; 2019; 14(9):e0222483. PubMed ID: 31560703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflection point in climatic suitability of insect pest species in Europe suggests non-linear responses to climate change.
    Grünig M; Calanca P; Mazzi D; Pellissier L
    Glob Chang Biol; 2020 Nov; 26(11):6338-6349. PubMed ID: 33245599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets.
    Schneider JM; Zabel F; Schünemann F; Delzeit R; Mauser W
    PLoS One; 2022; 17(2):e0263063. PubMed ID: 35192630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk factors for crop health under global change and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model.
    Savary S; Mila A; Willocquet L; Esker PD; Carisse O; McRoberts N
    Phytopathology; 2011 Jun; 101(6):696-709. PubMed ID: 21261467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orphan crops for future food security.
    Kumar B; Bhalothia P
    J Biosci; 2020; 45():. PubMed ID: 33184247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of vegetation dynamics, drought in relation with climate over South Asia from 1990 to 2011.
    Ali S; Henchiri M; Yao F; Zhang J
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11470-11481. PubMed ID: 30806929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal virtual water flows for improved food security in water-scarce countries.
    Maroufpoor S; Bozorg-Haddad O; Maroufpoor E; Gerbens-Leenes PW; Loáiciga HA; Savic D; Singh VP
    Sci Rep; 2021 Oct; 11(1):21027. PubMed ID: 34697363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.