BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35618164)

  • 1. Cohesive parcellation of the human brain using resting-state fMRI.
    Nemani A; Lowe MJ
    J Neurosci Methods; 2022 Jul; 377():109629. PubMed ID: 35618164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Connectivity-Based Parcellation of the Thalamus: An Unsupervised Clustering Method and Its Validity Investigation.
    Fan Y; Nickerson LD; Li H; Ma Y; Lyu B; Miao X; Zhuo Y; Ge J; Zou Q; Gao JH
    Brain Connect; 2015 Dec; 5(10):620-30. PubMed ID: 26106821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atlas-guided parcellation: Individualized functionally-homogenous parcellation in cerebral cortex.
    Li Y; Liu A; Fu X; Mckeown MJ; Wang ZJ; Chen X
    Comput Biol Med; 2022 Nov; 150():106078. PubMed ID: 36155266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI.
    Blumensath T; Jbabdi S; Glasser MF; Van Essen DC; Ugurbil K; Behrens TE; Smith SM
    Neuroimage; 2013 Aug; 76():313-24. PubMed ID: 23523803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional parcellation of the hippocampus by semi-supervised clustering of resting state fMRI data.
    Cheng H; Zhu H; Zheng Q; Liu J; He G
    Sci Rep; 2020 Oct; 10(1):16402. PubMed ID: 33009447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional parcellation of the neonatal cortical surface.
    Myers MJ; Labonte AK; Gordon EM; Laumann TO; Tu JC; Wheelock MD; Nielsen AN; Schwarzlose RF; Camacho MC; Alexopoulos D; Warner BB; Raghuraman N; Luby JL; Barch DM; Fair DA; Petersen SE; Rogers CE; Smyser CD; Sylvester CM
    Cereb Cortex; 2024 Jan; 34(2):. PubMed ID: 38372292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior.
    Kong R; Yang Q; Gordon E; Xue A; Yan X; Orban C; Zuo XN; Spreng N; Ge T; Holmes A; Eickhoff S; Yeo BTT
    Cereb Cortex; 2021 Aug; 31(10):4477-4500. PubMed ID: 33942058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating brain parcellations using the distance-controlled boundary coefficient.
    Zhi D; King M; Hernandez-Castillo CR; Diedrichsen J
    Hum Brain Mapp; 2022 Aug; 43(12):3706-3720. PubMed ID: 35451538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution-based spectral clustering for brain parcellation using functional MRI.
    Dillon K; Wang YP
    J Neurosci Methods; 2020 Apr; 335():108628. PubMed ID: 32035090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI.
    Hu Y; Li X; Wang L; Han B; Nie S
    Brain Res Bull; 2020 Sep; 162():199-207. PubMed ID: 32603775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual parcellation of resting fMRI with a group functional connectivity prior.
    Chong M; Bhushan C; Joshi AA; Choi S; Haldar JP; Shattuck DW; Spreng RN; Leahy RM
    Neuroimage; 2017 Aug; 156():87-100. PubMed ID: 28478226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sGraSP: A graph-based method for the derivation of subject-specific functional parcellations of the brain.
    Honnorat N; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C
    J Neurosci Methods; 2017 Feb; 277():1-20. PubMed ID: 27913211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.
    Mejia AF; Nebel MB; Shou H; Crainiceanu CM; Pekar JJ; Mostofsky S; Caffo B; Lindquist MA
    Neuroimage; 2015 May; 112():14-29. PubMed ID: 25731998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI.
    Liu Y; Li J; Wisnowski JL; Leahy RM
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics.
    Fan L; Zhong Q; Qin J; Li N; Su J; Zeng LL; Hu D; Shen H
    Hum Brain Mapp; 2021 Apr; 42(5):1416-1433. PubMed ID: 33283954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GraSP: geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex.
    Honnorat N; Eavani H; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C
    Neuroimage; 2015 Feb; 106():207-21. PubMed ID: 25462796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.
    Arslan S; Ktena SI; Makropoulos A; Robinson EC; Rueckert D; Parisot S
    Neuroimage; 2018 Apr; 170():5-30. PubMed ID: 28412442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parcellation of the human amygdala using recurrence quantification analysis.
    Bielski K; Adamus S; Kolada E; Rączaszek-Leonardi J; Szatkowska I
    Neuroimage; 2021 Feb; 227():117644. PubMed ID: 33338610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.