These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35618751)

  • 21. Effects of prolonged incubation period and centralized quarantine on the COVID-19 outbreak in Shijiazhuang, China: a modeling study.
    Zhu W; Zhang M; Pan J; Yao Y; Wang W
    BMC Med; 2021 Dec; 19(1):308. PubMed ID: 34872559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of COVID-19 Epidemic Prevention and Control and Public Health Emergency Response System Based on Discrete Stochastic Mathematical Model.
    Yang Y; Dong L; Rong H; HongyuYang ; Liu B
    Comput Math Methods Med; 2022; 2022():5693293. PubMed ID: 35444714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How Seasonality and Control Measures Jointly Determine the Multistage Waves of the COVID-19 Epidemic: A Modelling Study and Implications.
    Zheng Y; Wang Y
    Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35681989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction on transmission trajectory of COVID-19 based on particle swarm algorithm.
    Ding C; Chen Y; Liu Z; Liu T
    Pattern Recognit Lett; 2021 Dec; 152():70-78. PubMed ID: 34538991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple transmission dynamics model for predicting the evolution of COVID-19 under control measures in China.
    Shang C; Yang Y; Chen GY; Shang XD
    Epidemiol Infect; 2021 Feb; 149():e43. PubMed ID: 33563354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multi-stage SEIR(D) model of the COVID-19 epidemic in Korea.
    Shin HY
    Ann Med; 2021 Dec; 53(1):1159-1169. PubMed ID: 34269629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Data driven time-varying SEIR-LSTM/GRU algorithms to track the spread of COVID-19.
    Feng L; Chen Z; Jr HAL; Furati K; Khaliq A
    Math Biosci Eng; 2022 Jun; 19(9):8935-8962. PubMed ID: 35942743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the COVID-19 Epidemic With Multi-Population and Control Strategies in the United States.
    Sun D; Long X; Liu J
    Front Public Health; 2021; 9():751940. PubMed ID: 35047470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China.
    Wang C; Pan R; Wan X; Tan Y; Xu L; Ho CS; Ho RC
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32155789
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of different resumption strategies to flatten the potential COVID-19 outbreaks amid society reopens: a modeling study in China.
    Ge Y; Zhang WB; Wang J; Liu M; Ren Z; Zhang X; Zhou C; Tian Z
    BMC Public Health; 2021 Mar; 21(1):604. PubMed ID: 33781224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age-Stratified Infection Probabilities Combined With a Quarantine-Modified Model for COVID-19 Needs Assessments: Model Development Study.
    Bongolan VP; Minoza JMA; de Castro R; Sevilleja JE
    J Med Internet Res; 2021 May; 23(5):e19544. PubMed ID: 33900929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. China's model to combat the COVID-19 epidemic: a public health emergency governance approach.
    Ning Y; Ren R; Nkengurutse G
    Glob Health Res Policy; 2020; 5():34. PubMed ID: 32685691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model.
    Carcione JM; Santos JE; Bagaini C; Ba J
    Front Public Health; 2020; 8():230. PubMed ID: 32574303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compartmental structures used in modeling COVID-19: a scoping review.
    Kong L; Duan M; Shi J; Hong J; Chang Z; Zhang Z
    Infect Dis Poverty; 2022 Jun; 11(1):72. PubMed ID: 35729655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Fitting and forecasting the trend of COVID-19 by SEIR(+CAQ) dynamic model].
    Wei YY; Lu ZZ; Du ZC; Zhang ZJ; Zhao Y; Shen SP; Wang B; Hao YT; Chen F
    Zhonghua Liu Xing Bing Xue Za Zhi; 2020 Apr; 41(4):470-475. PubMed ID: 32113198
    [No Abstract]   [Full Text] [Related]  

  • 36. Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China.
    Olabode D; Culp J; Fisher A; Tower A; Hull-Nye D; Wang X
    Math Biosci Eng; 2021 Jan; 18(1):950-967. PubMed ID: 33525127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring early prevention and control of COVID-19 outbreak based on system dynamics model analysis.
    Dong S; Cui Z; Pan X; Wang J; Gao C
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2021 Feb; 50(1):41-51. PubMed ID: 34117858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SEIR order parameters and eigenvectors of the three stages of completed COVID-19 epidemics: with an illustration for Thailand January to May 2020.
    Frank TD; Chiangga S
    Phys Biol; 2021 May; 18(4):. PubMed ID: 33789256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): A well-mixed SEIR model analysis.
    Hou C; Chen J; Zhou Y; Hua L; Yuan J; He S; Guo Y; Zhang S; Jia Q; Zhao C; Zhang J; Xu G; Jia E
    J Med Virol; 2020 Jul; 92(7):841-848. PubMed ID: 32243599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of awareness diffusion on the spread of COVID-19 based on a two-layer SEIR/V-UA epidemic model.
    Zhao X; Zhou Q; Wang A; Zhu F; Meng Z; Zuo C
    J Med Virol; 2021 Jul; 93(7):4342-4350. PubMed ID: 33738825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.