BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35618899)

  • 1. FRESH 3D Bioprinting a Ventricle-like Cardiac Construct Using Human Stem Cell-Derived Cardiomyocytes.
    Coffin BD; Hudson AR; Lee A; Feinberg AW
    Methods Mol Biol; 2022; 2485():71-85. PubMed ID: 35618899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities.
    Wu CA; Zhu Y; Venkatesh A; Stark CJ; Lee SH; Woo YJ
    Tissue Eng Part C Methods; 2023 Mar; 29(3):85-94. PubMed ID: 36719778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRESH 3D bioprinting a contractile heart tube using human stem cell-derived cardiomyocytes.
    Bliley J; Tashman J; Stang M; Coffin B; Shiwarski D; Lee A; Hinton T; Feinberg A
    Biofabrication; 2022 Mar; 14(2):. PubMed ID: 35213846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinting of collagen to rebuild components of the human heart.
    Lee A; Hudson AR; Shiwarski DJ; Tashman JW; Hinton TJ; Yerneni S; Bliley JM; Campbell PG; Feinberg AW
    Science; 2019 Aug; 365(6452):482-487. PubMed ID: 31371612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting.
    Engberg A; Stelzl C; Eriksson O; O'Callaghan P; Kreuger J
    Sci Rep; 2021 Nov; 11(1):21547. PubMed ID: 34732783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRESH bioprinting technology for tissue engineering - the influence of printing process and bioink composition on cell behavior and vascularization.
    Kreimendahl F; Kniebs C; Tavares Sobreiro AM; Schmitz-Rode T; Jockenhoevel S; Thiebes AL
    J Appl Biomater Funct Mater; 2021; 19():22808000211028808. PubMed ID: 34282976
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Tashman JW; Shiwarski DJ; Coffin B; Ruesch A; Lanni F; Kainerstorfer JM; Feinberg AW
    Biofabrication; 2022 Oct; 15(1):. PubMed ID: 36195056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting Phototunable Hydrogels to Study Fibroblast Activation.
    Tanneberger AE; Blair L; Davis-Hall D; Magin CM
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37458469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinted functional and contractile cardiac tissue constructs.
    Wang Z; Lee SJ; Cheng HJ; Yoo JJ; Atala A
    Acta Biomater; 2018 Apr; 70():48-56. PubMed ID: 29452273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step FRESH Bioprinting of Low-Viscosity Silk Fibroin Inks.
    Sakai S; Morita T
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2589-2597. PubMed ID: 35608818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes.
    Maiullari F; Costantini M; Milan M; Pace V; Chirivì M; Maiullari S; Rainer A; Baci D; Marei HE; Seliktar D; Gargioli C; Bearzi C; Rizzi R
    Sci Rep; 2018 Sep; 8(1):13532. PubMed ID: 30201959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRESH 3D Bioprinting a Full-Size Model of the Human Heart.
    Mirdamadi E; Tashman JW; Shiwarski DJ; Palchesko RN; Feinberg AW
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6453-6459. PubMed ID: 33449644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct 3D-Bioprinting of hiPSC-Derived Cardiomyocytes to Generate Functional Cardiac Tissues.
    Esser TU; Anspach A; Muenzebrock KA; Kah D; Schrüfer S; Schenk J; Heinze KG; Schubert DW; Fabry B; Engel FB
    Adv Mater; 2023 Dec; 35(52):e2305911. PubMed ID: 37655652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.
    Lee JM; Yeong WY
    Adv Healthc Mater; 2016 Nov; 5(22):2856-2865. PubMed ID: 27767258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs.
    Ho L; Hsu SH
    Acta Biomater; 2018 Apr; 70():57-70. PubMed ID: 29425719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high performance open-source syringe extruder optimized for extrusion and retraction during FRESH 3D bioprinting.
    Tashman JW; Shiwarski DJ; Feinberg AW
    HardwareX; 2021 Apr; 9():. PubMed ID: 34746519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro.
    Das S; Kim SW; Choi YJ; Lee S; Lee SH; Kong JS; Park HJ; Cho DW; Jang J
    Acta Biomater; 2019 Sep; 95():188-200. PubMed ID: 30986526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeform 3D Bioprinting Involving Ink Gelation by Cascade Reaction of Oxidase and Peroxidase: A Feasibility Study Using Hyaluronic Acid-Based Ink.
    Sakai S; Harada R; Kotani T
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.