BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 35619043)

  • 1. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles.
    Butt AM; Abdullah N; Rani NNIM; Ahmad N; Amin MCIM
    Pharm Res; 2022 Jun; 39(6):1047-1064. PubMed ID: 35619043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC.
    Chen P; Yang W; Hong T; Miyazaki T; Dirisala A; Kataoka K; Cabral H
    Biomaterials; 2022 Sep; 288():121748. PubMed ID: 36038419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.
    Ahmad A; Khan JM; Haque S
    Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors.
    Degors IMS; Wang C; Rehman ZU; Zuhorn IS
    Acc Chem Res; 2019 Jul; 52(7):1750-1760. PubMed ID: 31243966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction-Responsive Polymer Prodrug Micelles with Enhanced Endosomal Escape Capability for Efficient Intracellular Translocation and Drug Release.
    Ibrahim A; Twizeyimana E; Lu N; Ke W; Mukerabigwi JF; Mohammed F; Japir AAMM; Ge Z
    ACS Appl Bio Mater; 2019 Nov; 2(11):5099-5109. PubMed ID: 35021452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers.
    Hu J; Liu G; Wang C; Liu T; Zhang G; Liu S
    Biomacromolecules; 2014 Nov; 15(11):4293-301. PubMed ID: 25317967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Intracellular Delivery of Antibodies in Cancer Cells with Nanocarriers Sensing Endo/Lysosomal Enzymatic Activity.
    Chen P; Yang W; Mochida Y; Li S; Hong T; Kinoh H; Kataoka K; Cabral H
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202317817. PubMed ID: 38342757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imidazole-Bearing Polymeric Micelles for Enhanced Cellular Uptake, Rapid Endosomal Escape, and On-demand Cargo Release.
    Lu D; An Y; Feng S; Li X; Fan A; Wang Z; Zhao Y
    AAPS PharmSciTech; 2018 Aug; 19(6):2610-2619. PubMed ID: 29916192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endosomal escape: a bottleneck in intracellular delivery.
    Shete HK; Prabhu RH; Patravale VB
    J Nanosci Nanotechnol; 2014 Jan; 14(1):460-74. PubMed ID: 24730275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the interaction of amphiphilic polymer nanoparticles with biomembranes to Guide rational design of drug delivery systems.
    Rotem R; Micale A; Rizzuto MA; Migliavacca M; Giustra M; Salvioni L; Tasin F; Prosperi D; Colombo M
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111366. PubMed ID: 32992287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking.
    Gao Y; Li Y; Li Y; Yuan L; Zhou Y; Li J; Zhao L; Zhang C; Li X; Liu Y
    Nanoscale; 2015 Jan; 7(2):597-612. PubMed ID: 25419788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Endosomal Escape Using pHlexi Nanoparticles.
    Kongkatigumjorn N; Cortez-Jugo C; Czuba E; Wong AS; Hodgetts RY; Johnston AP; Such GK
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27786422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in the study of tumor pH-responsive polymeric micelles for cancer drug targeting delivery].
    Xu JX; Tang JB; Zhao LH; Shen YQ
    Yao Xue Xue Bao; 2009 Dec; 44(12):1328-35. PubMed ID: 21351464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles.
    Selby LI; Cortez-Jugo CM; Such GK; Johnston APR
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28160452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. siRNA-Loaded Polyion Complex Micelle Decorated with Charge-Conversional Polymer Tuned to Undergo Stepwise Response to Intra-Tumoral and Intra-Endosomal pHs for Exerting Enhanced RNAi Efficacy.
    Tangsangasaksri M; Takemoto H; Naito M; Maeda Y; Sueyoshi D; Kim HJ; Miura Y; Ahn J; Azuma R; Nishiyama N; Miyata K; Kataoka K
    Biomacromolecules; 2016 Jan; 17(1):246-55. PubMed ID: 26616636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in tumor pH targeting nanotechnology.
    Lee ES; Gao Z; Bae YH
    J Control Release; 2008 Dec; 132(3):164-70. PubMed ID: 18571265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-responsive cationic liposome for endosomal escape mediated drug delivery.
    Rayamajhi S; Marchitto J; Nguyen TDT; Marasini R; Celia C; Aryal S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110804. PubMed ID: 31972443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The strategies of endosomal escape for intracellular gene delivery].
    Wang WX; Dai K; Hong L; Cai T; Tang L
    Yao Xue Xue Bao; 2014 Aug; 49(8):1111-6. PubMed ID: 25322551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-tuning of charge-conversion polymer structure for efficient endosomal escape of siRNA-loaded calcium phosphate hybrid micelles.
    Maeda Y; Pittella F; Nomoto T; Takemoto H; Nishiyama N; Miyata K; Kataoka K
    Macromol Rapid Commun; 2014 Jul; 35(13):1211-5. PubMed ID: 24715658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.