BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 35619118)

  • 1. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming.
    Colyn L; Alvarez-Sola G; Latasa MU; Uriarte I; Herranz JM; Arechederra M; Vlachogiannis G; Rae C; Pineda-Lucena A; Casadei-Gardini A; Pedica F; Aldrighetti L; López-López A; López-Gonzálvez A; Barbas C; Ciordia S; Van Liempd SM; Falcón-Pérez JM; Urman J; Sangro B; Vicent S; Iraburu MJ; Prosper F; Nelson LJ; Banales JM; Martinez-Chantar ML; Marin JJG; Braconi C; Trautwein C; Corrales FJ; Cubero FJ; Berasain C; Fernandez-Barrena MG; Avila MA
    J Exp Clin Cancer Res; 2022 May; 41(1):183. PubMed ID: 35619118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Targeting of G9a and DNA Methyltransferase-1 for the Treatment of Experimental Cholangiocarcinoma.
    Colyn L; Bárcena-Varela M; Álvarez-Sola G; Latasa MU; Uriarte I; Santamaría E; Herranz JM; Santos-Laso A; Arechederra M; Ruiz de Gauna M; Aspichueta P; Canale M; Casadei-Gardini A; Francesconi M; Carotti S; Morini S; Nelson LJ; Iraburu MJ; Chen C; Sangro B; Marin JJG; Martinez-Chantar ML; Banales JM; Arnes-Benito R; Huch M; Patino JM; Dar AA; Nosrati M; Oyarzábal J; Prósper F; Urman J; Cubero FJ; Trautwein C; Berasain C; Fernandez-Barrena MG; Avila MA
    Hepatology; 2021 Jun; 73(6):2380-2396. PubMed ID: 33222246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic Silencing of 15-Hydroxyprostaglandin Dehydrogenase by Histone Methyltransferase EHMT2/G9a in Cholangiocarcinoma.
    Zhang J; Chen W; Ma W; Song K; Lee S; Han C; Wu T
    Mol Cancer Res; 2022 Mar; 20(3):350-360. PubMed ID: 34880125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SIRT2/cMYC Pathway Inhibits Peroxidation-Related Apoptosis In Cholangiocarcinoma Through Metabolic Reprogramming.
    Xu L; Wang L; Zhou L; Dorfman RG; Pan Y; Tang D; Wang Y; Yin Y; Jiang C; Zou X; Wu J; Zhang M
    Neoplasia; 2019 May; 21(5):429-441. PubMed ID: 30933885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Mouse Model of Cholangiocarcinoma Uncovers a Role for Tensin-4 in Tumor Progression.
    Di-Luoffo M; Pirenne S; Saandi T; Loriot A; Gérard C; Dauguet N; Manzano-Núñez F; Alves Souza Carvalhais N; Lamoline F; Cordi S; Konobrocka K; De Greef V; Komuta M; Halder G; Jacquemin P; Lemaigre FP
    Hepatology; 2021 Sep; 74(3):1445-1460. PubMed ID: 33768568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines.
    Xu L; Hausmann M; Dietmaier W; Kellermeier S; Pesch T; Stieber-Gunckel M; Lippert E; Klebl F; Rogler G
    BMC Cancer; 2010 Jun; 10():302. PubMed ID: 20565817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Inflammatory Checkpoint Generated by IL1RN Splicing Offers Therapeutic Opportunity for KRAS-Mutant Intrahepatic Cholangiocarcinoma.
    Zhang M; Huang Y; Pan J; Sang C; Lin Y; Dong L; Shen X; Wu Y; Song G; Ji S; Liu F; Wang M; Zheng Y; Zhang S; Wang Z; Ren J; Gao D; Zhou J; Fan J; Wei W; Lin J; Gao Q
    Cancer Discov; 2023 Oct; 13(10):2248-2269. PubMed ID: 37486241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications.
    Martin-Serrano MA; Kepecs B; Torres-Martin M; Bramel ER; Haber PK; Merritt E; Rialdi A; Param NJ; Maeda M; Lindblad KE; Carter JK; Barcena-Varela M; Mazzaferro V; Schwartz M; Affo S; Schwabe RF; Villanueva A; Guccione E; Friedman SL; Lujambio A; Tocheva A; Llovet JM; Thung SN; Tsankov AM; Sia D
    Gut; 2023 Apr; 72(4):736-748. PubMed ID: 35584893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MYC determines lineage commitment in KRAS-driven primary liver cancer development.
    D'Artista L; Moschopoulou AA; Barozzi I; Craig AJ; Seehawer M; Herrmann L; Minnich M; Kang TW; Rist E; Henning M; Klotz S; Heinzmann F; Harbig J; Sipos B; Longerich T; Eilers M; Dauch D; Zuber J; Wang XW; Zender L
    J Hepatol; 2023 Jul; 79(1):141-149. PubMed ID: 36906109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pathways of genetic transformation in cholangiocarcinogenesis.
    Serafini FM; Radvinsky D
    Cancer Genet; 2016 Dec; 209(12):554-558. PubMed ID: 27720541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenesis, diagnosis, and management of cholangiocarcinoma.
    Ilyas SI; Gores GJ
    Gastroenterology; 2013 Dec; 145(6):1215-29. PubMed ID: 24140396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma.
    Dong L; Lu D; Chen R; Lin Y; Zhu H; Zhang Z; Cai S; Cui P; Song G; Rao D; Yi X; Wu Y; Song N; Liu F; Zou Y; Zhang S; Zhang X; Wang X; Qiu S; Zhou J; Wang S; Zhang X; Shi Y; Figeys D; Ding L; Wang P; Zhang B; Rodriguez H; Gao Q; Gao D; Zhou H; Fan J
    Cancer Cell; 2022 Jan; 40(1):70-87.e15. PubMed ID: 34971568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimeric immune checkpoint protein vaccines inhibit the tumorigenesis and growth of rat cholangiocarcinoma.
    Pan YR; Wu CE; Huang WK; Chen MH; Lan KH; Yeh CN
    Front Immunol; 2022; 13():982196. PubMed ID: 36341387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the role of necroptosis microenvironment: FCGBP + tumor-associated macrophages drive primary liver cancer differentiation towards cHCC-CCA or iCCA.
    Wang C; Chen C; Hu W; Tao L; Chen J
    Apoptosis; 2024 Apr; 29(3-4):460-481. PubMed ID: 38017206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Histone Methyltransferase G9a Promotes Cholangiocarcinogenesis Through Regulation of the Hippo Pathway Kinase LATS2 and YAP Signaling Pathway.
    Ma W; Han C; Zhang J; Song K; Chen W; Kwon H; Wu T
    Hepatology; 2020 Oct; 72(4):1283-1297. PubMed ID: 31990985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Proteomics Reveals Down-Regulated Glycolysis/Gluconeogenesis in the Large-Duct Type Intrahepatic Cholangiocarcinoma.
    Guo Y; Li Q; Ren W; Wu H; Wang C; Li X; Xue B; Qiu Y; Zhang J; Chen J; Fang L
    J Proteome Res; 2022 Oct; 21(10):2504-2514. PubMed ID: 36066509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease.
    Cigliano A; Zhang S; Ribback S; Steinmann S; Sini M; Ament CE; Utpatel K; Song X; Wang J; Pilo MG; Berger F; Wang H; Tao J; Li X; Pes GM; Mancarella S; Giannelli G; Dombrowski F; Evert M; Calvisi DF; Chen X; Evert K
    J Exp Clin Cancer Res; 2022 Jun; 41(1):192. PubMed ID: 35655220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways.
    Tiemin P; Fanzheng M; Peng X; Jihua H; Ruipeng S; Yaliang L; Yan W; Junlin X; Qingfu L; Zhefeng H; Jian L; Zihao G; Guoxing L; Boshi S; Ming Z; Qinghui M; Desen L; Lianxin L
    J Hepatol; 2020 Apr; 72(4):761-773. PubMed ID: 31837357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression.
    Dwyer BJ; Jarman EJ; Gogoi-Tiwari J; Ferreira-Gonzalez S; Boulter L; Guest RV; Kendall TJ; Kurian D; Kilpatrick AM; Robson AJ; O'Duibhir E; Man TY; Campana L; Starkey Lewis PJ; Wigmore SJ; Olynyk JK; Ramm GA; Tirnitz-Parker JEE; Forbes SJ
    J Hepatol; 2021 Apr; 74(4):860-872. PubMed ID: 33221352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiomics analysis reveals metabolic subtypes and identifies diacylglycerol kinase α (DGKA) as a potential therapeutic target for intrahepatic cholangiocarcinoma.
    Liu W; Wang H; Zhao Q; Tao C; Qu W; Hou Y; Huang R; Sun Z; Zhu G; Jiang X; Fang Y; Gao J; Wu X; Yang Z; Ping R; Chen J; Yang R; Chu T; Zhou J; Fan J; Tang Z; Yang D; Shi Y
    Cancer Commun (Lond); 2024 Feb; 44(2):226-250. PubMed ID: 38143235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.