BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35619177)

  • 1. Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction.
    Zhang L; Yang H; Xia Y; Shen W; Liu L; Li Q; Chen X
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):59. PubMed ID: 35619177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production.
    Zhang C; Li M; Zhao GR; Lu W
    J Agric Food Chem; 2020 Feb; 68(5):1382-1389. PubMed ID: 31944688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol.
    Sonntag F; Kroner C; Lubuta P; Peyraud R; Horst A; Buchhaupt M; Schrader J
    Metab Eng; 2015 Nov; 32():82-94. PubMed ID: 26369439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae.
    Zhang C; Liu J; Zhao F; Lu C; Zhao GR; Lu W
    Metab Eng; 2018 Sep; 49():28-35. PubMed ID: 30031850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing
    Guo Q; Shi TQ; Peng QQ; Sun XM; Ji XJ; Huang H
    J Agric Food Chem; 2021 Nov; 69(46):13831-13837. PubMed ID: 34751575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound.
    Nguyen AD; Kim D; Lee EY
    Metab Eng; 2020 Sep; 61():69-78. PubMed ID: 32387228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica.
    Guo Q; Li YW; Yan F; Li K; Wang YT; Ye C; Shi TQ; Huang H
    Biotechnol Bioeng; 2022 Oct; 119(10):2819-2830. PubMed ID: 35798689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the oleaginous yeast
    Pang Y; Zhao Y; Li S; Zhao Y; Li J; Hu Z; Zhang C; Xiao D; Yu A
    Biotechnol Biofuels; 2019; 12():241. PubMed ID: 31624503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overproduction of α-Farnesene in
    Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G
    J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering an oleaginous yeast Candida tropicalis SY005 for enhanced lipid production.
    Chattopadhyay A; Gupta A; Maiti MK
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8399-8411. PubMed ID: 32820371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-yield α-humulene production in Yarrowia lipolytica from waste cooking oil based on transcriptome analysis and metabolic engineering.
    Guo Q; Peng QQ; Chen YY; Song P; Ji XJ; Huang H; Shi TQ
    Microb Cell Fact; 2022 Dec; 21(1):271. PubMed ID: 36566177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone.
    Czajka JJ; Nathenson JA; Benites VT; Baidoo EEK; Cheng Q; Wang Y; Tang YJ
    Microb Cell Fact; 2018 Sep; 17(1):136. PubMed ID: 30172260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gram-scale production of the sesquiterpene α-humulene with Cupriavidus necator.
    Milker S; Sydow A; Torres-Monroy I; Jach G; Faust F; Kranz L; Tkatschuk L; Holtmann D
    Biotechnol Bioeng; 2021 Jul; 118(7):2694-2702. PubMed ID: 33844284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the oleaginous yeast
    Liu Y; Jiang X; Cui Z; Wang Z; Qi Q; Hou J
    Biotechnol Biofuels; 2019; 12():296. PubMed ID: 31890024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing n-butanol production with
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():257. PubMed ID: 27924150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway.
    Okamura E; Tomita T; Sawa R; Nishiyama M; Kuzuyama T
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11265-70. PubMed ID: 20534558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthetic pathway redesign in non-conventional yeast for enhanced production of cembratriene-ol.
    Zhang L; Fan C; Yang H; Xia Y; Shen W; Chen X
    Bioresour Technol; 2024 May; 399():130596. PubMed ID: 38493939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Metabolic Rewiring of Yeast Enables Overproduction of Sesquiterpene (+)-Valencene.
    Cao C; Cao X; Yu W; Chen Y; Lin X; Zhu B; Zhou YJ
    J Agric Food Chem; 2022 Jun; 70(23):7180-7187. PubMed ID: 35657170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of (-)-α-bisabolol in metabolically engineered Saccharomyces cerevisiae.
    Kim TY; Park H; Kim SK; Kim SJ; Park YC
    J Biotechnol; 2021 Nov; 340():13-21. PubMed ID: 34391805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative production and direct extraction of (-)-α-bisabolol in metabolically engineered Escherichia coli.
    Han GH; Kim SK; Yoon PK; Kang Y; Kim BS; Fu Y; Sung BH; Jung HC; Lee DH; Kim SW; Lee SG
    Microb Cell Fact; 2016 Nov; 15(1):185. PubMed ID: 27825357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.