These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35619340)

  • 1. 4D Printing of Robust Hydrogels Consisted of Agarose Nanofibers and Polyacrylamide.
    Guo J; Zhang R; Zhang L; Cao X
    ACS Macro Lett; 2018 Apr; 7(4):442-446. PubMed ID: 35619340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and thermoplastic hydrogels with surface micro-patterns for highly oriented growth of osteoblasts.
    Guo J; Duan J; Wu S; Guo J; Huang C; Zhang L
    J Mater Chem B; 2017 Nov; 5(43):8446-8450. PubMed ID: 32264511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4D Printing of Multi-Hydrogels Using Direct Ink Writing in a Supporting Viscous Liquid.
    Uchida T; Onoe H
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-Form Liquid Crystal Elastomers via Embedded 4D Printing.
    McDougall L; Herman J; Huntley E; Leguizamon S; Cook A; White T; Kaehr B; Roach DJ
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58897-58904. PubMed ID: 38084015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Shape-Morphing Transitions in Hydrogels Through Suspension Bath Printing of Temperature-Responsive Granular Hydrogel Inks.
    Nakamura K; Di Caprio N; Burdick JA
    Adv Mater; 2024 Nov; 36(47):e2410661. PubMed ID: 39358935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D Printing of Ultrastretchable Magnetoactive Soft Material Architectures for Soft Actuators.
    Wajahat M; Kim JH; Kim JH; Jung ID; Pyo J; Seol SK
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59582-59591. PubMed ID: 38100363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization.
    McCracken JM; Rauzan BM; Kjellman JCE; Kandel ME; Liu YH; Badea A; Miller LA; Rogers SA; Popescu G; Nuzzo RG
    Adv Healthc Mater; 2019 Jan; 8(1):e1800788. PubMed ID: 30565889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels.
    Basu A; Saha A; Goodman C; Shafranek RT; Nelson A
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40898-40904. PubMed ID: 29091399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D bioprintable self-healing hydrogel with shape memory and cryopreserving properties.
    Wu SD; Hsu SH
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34530408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air.
    Jin Y; Liu C; Chai W; Compaan A; Huang Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17456-17465. PubMed ID: 28467835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink.
    Gao J; Ding X; Yu X; Chen X; Zhang X; Cui S; Shi J; Chen J; Yu L; Chen S; Ding J
    Adv Healthc Mater; 2021 Feb; 10(3):e2001404. PubMed ID: 33225617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration.
    Dong L; Bu Z; Xiong Y; Zhang H; Fang J; Hu H; Liu Z; Li X
    Int J Biol Macromol; 2021 Oct; 188():72-81. PubMed ID: 34364938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ink Based on the Tunable Swollen Microsphere for a 3D Printing Hydrogel with Broad-Range Mechanical Properties.
    Zhang R; Guo J; Yang X; Jiang X; Zhang L; Zhou J; Cao X; Duan B
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15917-15927. PubMed ID: 36921089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of Laponite® incorporated oxidized alginate-gelatin (ADA-GEL) composite hydrogels for extrusion-based 3D printing.
    Cai FF; Heid S; Boccaccini AR
    J Biomed Mater Res B Appl Biomater; 2021 Aug; 109(8):1090-1104. PubMed ID: 33277973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties.
    Huang B; Hu R; Xue Z; Zhao J; Li Q; Xia T; Zhang W; Lu C
    Carbohydr Polym; 2020 Mar; 231():115736. PubMed ID: 31888822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering.
    López-Marcial GR; Zeng AY; Osuna C; Dennis J; García JM; O'Connell GD
    ACS Biomater Sci Eng; 2018 Oct; 4(10):3610-3616. PubMed ID: 33450800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoengineered Colloidal Inks for 3D Bioprinting.
    Peak CW; Stein J; Gold KA; Gaharwar AK
    Langmuir; 2018 Jan; 34(3):917-925. PubMed ID: 28981287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.