These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35619340)

  • 21. 4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness.
    Weng S; Kuang X; Zhang Q; Hamel CM; Roach DJ; Hu N; Jerry Qi H
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12797-12804. PubMed ID: 33355461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formulation of Sugar/Hydrogel Inks for Rapid Thermal Response 4D Architectures with Sugar-derived Macropores.
    Ko H; Ratri MC; Kim K; Jung Y; Tae G; Shin K
    Sci Rep; 2020 May; 10(1):7527. PubMed ID: 32371928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting.
    Hsiao SH; Hsu SH
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29273-29287. PubMed ID: 30133249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printed superparamagnetic stimuli-responsive starfish-shaped hydrogels.
    Mohammed AA; Miao J; Ragaisyte I; Porter AE; Myant CW; Pinna A
    Heliyon; 2023 Apr; 9(4):e14682. PubMed ID: 37095948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus.
    Zhu P; Yang W; Wang R; Gao S; Li B; Li Q
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36435-36442. PubMed ID: 30270611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free Reprocessability of Tough and Self-Healing Hydrogels Based on Polyion Complex.
    Luo F; Sun TL; Nakajima T; Kurokawa T; Ihsan AB; Li X; Guo H; Gong JP
    ACS Macro Lett; 2015 Sep; 4(9):961-964. PubMed ID: 35596464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dual stimuli-responsive smart soft carrier using multi-material 4D printing.
    Choi I; Jang S; Jung S; Woo S; Kim J; Bak C; Lee Y; Park S
    Mater Horiz; 2023 Aug; 10(9):3668-3679. PubMed ID: 37350575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Digital Light Processing 3D Printing of Tough Supramolecular Hydrogels with Sophisticated Architectures as Impact-Absorption Elements.
    Dong M; Han Y; Hao XP; Yu HC; Yin J; Du M; Zheng Q; Wu ZL
    Adv Mater; 2022 Aug; 34(34):e2204333. PubMed ID: 35763430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.
    Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct 4D printing of ceramics driven by hydrogel dehydration.
    Wang R; Yuan C; Cheng J; He X; Ye H; Jian B; Li H; Bai J; Ge Q
    Nat Commun; 2024 Jan; 15(1):758. PubMed ID: 38272972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications.
    Jin Y; Shen Y; Yin J; Qian J; Huang Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10461-10470. PubMed ID: 29493213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a 3D printable and highly stretchable ternary organic-inorganic nanocomposite hydrogel.
    Hu C; Haider MS; Hahn L; Yang M; Luxenhofer R
    J Mater Chem B; 2021 Jun; 9(22):4535-4545. PubMed ID: 34037651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.
    Suriano R; Griffini G; Chiari M; Levi M; Turri S
    J Mech Behav Biomed Mater; 2014 Feb; 30():339-46. PubMed ID: 24368174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Development of New Material for 4D Printing and the Material Properties Comparison between the Conventional and Stereolithography Polymerised NVCL Hydrogels.
    Zhuo S; Geever LM; Halligan E; Tie BSH; Breheny C
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36547522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printing of an
    Liu W; Erol O; Gracias DH
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33267-33275. PubMed ID: 32644785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels.
    He Y; Yu R; Li X; Zhang M; Zhang Y; Yang X; Zhao X; Huang W
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36286-36294. PubMed ID: 34283559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering.
    Miao S; Cui H; Nowicki M; Xia L; Zhou X; Lee SJ; Zhu W; Sarkar K; Zhang Z; Zhang LG
    Adv Biosyst; 2018 Sep; 2(9):. PubMed ID: 30906853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.