These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35619452)

  • 1. Uniaxial Extension of Ultrathin Freestanding Polymer Films.
    Bay RK; Crosby AJ
    ACS Macro Lett; 2019 Sep; 8(9):1080-1085. PubMed ID: 35619452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The properties of free polymer surfaces and their influence on the glass transition temperature of thin polystyrene films.
    Sharp JS; Teichroeb JH; Forrest JA
    Eur Phys J E Soft Matter; 2004 Dec; 15(4):473-87. PubMed ID: 15599788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability and rupture of ultrathin freestanding viscoelastic solid films.
    Sekhar S; Sharma A; Shankar V
    Phys Rev E; 2022 Aug; 106(2-1):024803. PubMed ID: 36109925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature- and thickness-dependent elastic moduli of polymer thin films.
    Ao Z; Li S
    Nanoscale Res Lett; 2011 Mar; 6(1):243. PubMed ID: 21711747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Free Thermal Expansion and Glass Transition of Ultrathin Polymer Films on Heated Liquid.
    Lee TI; Kim JH; Kim DJ; Kim TS
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30336-30343. PubMed ID: 38781291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Probing the Relaxation Properties of Ultrathin Polystyrene Films by Using Electric Force Microscopy.
    Qian X; Lin Z; Guan L; Li Q; Wang Y; Zhang M; Dong M
    Nanoscale Res Lett; 2017 Dec; 12(1):257. PubMed ID: 28395475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoconfinement Controls Mechanical Properties of Elastomeric Thin Films.
    Bai P; Ma M; Sui L; Guo Y
    J Phys Chem Lett; 2021 Aug; 12(33):8072-8079. PubMed ID: 34406018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Adjacent Hydrophilic Polymer Thin Films on Physical Aging and Residual Stress in Thin Films of Poly(butylnorbornene-
    Lewis EA; Stafford CM; Vogt BD
    J Polym Sci B Polym Phys; 2019; 57(15):. PubMed ID: 32165786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the rheological properties of supported thin polystyrene films by investigating the growth dynamics of wetting ridges.
    Zuo B; Tian H; Liang Y; Xu H; Zhang W; Zhang L; Wang X
    Soft Matter; 2016 Jul; 12(28):6120-31. PubMed ID: 27355155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generic "micro-Stoney" method for the measurement of internal stress and elastic modulus of ultrathin films.
    Favache A; Ryelandt S; Melchior M; Zeb G; Carbonnelle P; Raskin JP; Pardoen T
    Rev Sci Instrum; 2016 Jan; 87(1):015002. PubMed ID: 26827345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature.
    Torres JM; Stafford CM; Vogt BD
    ACS Nano; 2009 Sep; 3(9):2677-85. PubMed ID: 19702280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: novel fluorescence measurements.
    Ellison CJ; Kim SD; Hall DB; Torkelson JM
    Eur Phys J E Soft Matter; 2002 May; 8(2):155-66. PubMed ID: 15010965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting-dewetting transition line in thin polymer films.
    Ashley KM; Raghavan D; Douglas JF; Karim A
    Langmuir; 2005 Oct; 21(21):9518-23. PubMed ID: 16207030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring glassy and viscoelastic polymer flow in molecular-scale gaps using a flat punch mechanical probe.
    Rowland HD; King WP; Cross GL; Pethica JB
    ACS Nano; 2008 Mar; 2(3):419-28. PubMed ID: 19206565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SMART transfer method to directly compare the mechanical response of water-supported and free-standing ultrathin polymeric films.
    Galuska LA; Muckley ES; Cao Z; Ehlenberg DF; Qian Z; Zhang S; Rondeau-Gagné S; Phan MD; Ankner JF; Ivanov IN; Gu X
    Nat Commun; 2021 Apr; 12(1):2347. PubMed ID: 33879775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The architecture of the adsorbed layer at the substrate interface determines the glass transition of supported ultrathin polystyrene films.
    Sun S; Xu H; Han J; Zhu Y; Zuo B; Wang X; Zhang W
    Soft Matter; 2016 Oct; 12(40):8348-8358. PubMed ID: 27714375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry.
    Pye JE; Roth CB
    Phys Rev Lett; 2011 Dec; 107(23):235701. PubMed ID: 22182101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain Rate and Thickness Dependences of Elastic Modulus of Free-Standing Polymer Nanometer Films.
    Yiu PM; Yuan H; Gu Q; Gao P; Tsui OKC
    ACS Macro Lett; 2020 Nov; 9(11):1521-1526. PubMed ID: 35617079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of ultra-thin polystyrene with and without a (artificial) dead layer studied by resonance enhanced dynamic light scattering.
    Vianna SDB; Lin FY; Plum MA; Duran H; Steffen W
    J Chem Phys; 2017 May; 146(20):203333. PubMed ID: 28571376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Glass Transition Temperature of Thin Polystyrene Films Having an Underneath Cross-Linked Layer.
    Bai L; Luo P; Yang X; Xu J; Kawaguchi D; Zhang C; Yamada NL; Tanaka K; Zhang W; Wang X
    ACS Macro Lett; 2022 Feb; 11(2):210-216. PubMed ID: 35574771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.