BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35619650)

  • 1. A Commensal Streptococcus Dysregulates the
    Baty JJ; Huffines JT; Stoner SN; Scoffield JA
    Front Cell Infect Microbiol; 2022; 12():817336. PubMed ID: 35619650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An oral commensal attenuates
    Baty JJ; Stoner SN; McDaniel MS; Huffines JT; Edmonds SE; Evans NJ; Novak L; Scoffield JA
    Microbiol Spectr; 2023 Dec; 11(6):e0219823. PubMed ID: 37800950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrite reductase is critical for Pseudomonas aeruginosa survival during co-infection with the oral commensal Streptococcus parasanguinis.
    Scoffield JA; Wu H
    Microbiology (Reading); 2016 Feb; 162(2):376-383. PubMed ID: 26673783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral streptococci and nitrite-mediated interference of Pseudomonas aeruginosa.
    Scoffield JA; Wu H
    Infect Immun; 2015 Jan; 83(1):101-7. PubMed ID: 25312949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation.
    Scoffield JA; Duan D; Zhu F; Wu H
    PLoS Pathog; 2017 Apr; 13(4):e1006300. PubMed ID: 28448633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commensal Bacteria in the Cystic Fibrosis Airway Microbiome Reduce
    Tony-Odigie A; Wilke L; Boutin S; Dalpke AH; Yi B
    Front Cell Infect Microbiol; 2022; 12():824101. PubMed ID: 35174108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commensal colonization reduces
    Stoner SN; Baty JJ; Novak L; Scoffield JA
    Front Cell Infect Microbiol; 2023; 13():1144157. PubMed ID: 37305417
    [No Abstract]   [Full Text] [Related]  

  • 8. Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus.
    Waite RD; Qureshi MR; Whiley RA
    PLoS One; 2017; 12(3):e0173741. PubMed ID: 28301571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production.
    Scott JE; Li K; Filkins LM; Zhu B; Kuchma SL; Schwartzman JD; O'Toole GA
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30718303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environment and colonisation sequence are key parameters driving cooperation and competition between Pseudomonas aeruginosa cystic fibrosis strains and oral commensal streptococci.
    Whiley RA; Fleming EV; Makhija R; Waite RD
    PLoS One; 2015; 10(2):e0115513. PubMed ID: 25710466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway commensal bacteria in cystic fibrosis inhibit the growth of P. aeruginosa via a released metabolite.
    Tony-Odigie A; Dalpke AH; Boutin S; Yi B
    Microbiol Res; 2024 Jun; 283():127680. PubMed ID: 38520837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tobramycin-Treated Pseudomonas aeruginosa PA14 Enhances Streptococcus constellatus 7155 Biofilm Formation in a Cystic Fibrosis Model System.
    Price KE; Naimie AA; Griffin EF; Bay C; O'Toole GA
    J Bacteriol; 2016 Jan; 198(2):237-47. PubMed ID: 26483523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa.
    Bernardy EE; Petit RA; Raghuram V; Alexander AM; Read TD; Goldberg JB
    mBio; 2020 Jun; 11(3):. PubMed ID: 32576671
    [No Abstract]   [Full Text] [Related]  

  • 14. Dietary Nitrite Drives Disease Outcomes in Oral Polymicrobial Infections.
    Scoffield J; Michalek S; Harber G; Eipers P; Morrow C; Wu H
    J Dent Res; 2019 Aug; 98(9):1020-1026. PubMed ID: 31219733
    [No Abstract]   [Full Text] [Related]  

  • 15. RhlR-Regulated Acyl-Homoserine Lactone Quorum Sensing in a Cystic Fibrosis Isolate of Pseudomonas aeruginosa.
    Cruz RL; Asfahl KL; Van den Bossche S; Coenye T; Crabbé A; Dandekar AA
    mBio; 2020 Apr; 11(2):. PubMed ID: 32265330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calprotectin-Mediated Zinc Chelation Inhibits Pseudomonas aeruginosa Protease Activity in Cystic Fibrosis Sputum.
    Vermilyea DM; Crocker AW; Gifford AH; Hogan DA
    J Bacteriol; 2021 Jun; 203(13):e0010021. PubMed ID: 33927050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Yin and Yang of
    Scott JE; O'Toole GA
    J Bacteriol; 2019 Jun; 201(11):. PubMed ID: 30885933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denitrification by cystic fibrosis pathogens - Stenotrophomonas maltophilia is dormant in sputum.
    Kolpen M; Kragh KN; Bjarnsholt T; Line L; Hansen CR; Dalbøge CS; Hansen N; Kühl M; Høiby N; Jensen PØ
    Int J Med Microbiol; 2015 Jan; 305(1):1-10. PubMed ID: 25441256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas aeruginosa Volatilome Characteristics and Adaptations in Chronic Cystic Fibrosis Lung Infections.
    Davis TJ; Karanjia AV; Bhebhe CN; West SB; Richardson M; Bean HD
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33028687
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung.
    Dingemans J; Monsieurs P; Yu SH; Crabbé A; Förstner KU; Malfroot A; Cornelis P; Van Houdt R
    mBio; 2016 Aug; 7(4):. PubMed ID: 27486191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.