These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35619770)

  • 21. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data.
    Zhao X; Cheung LW
    BMC Bioinformatics; 2007 Feb; 8():67. PubMed ID: 17328811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-Enabled Prediction Methods Based on Machine Learning.
    Reinoso-Peláez EL; Gianola D; González-Recio O
    Methods Mol Biol; 2022; 2467():189-218. PubMed ID: 35451777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors.
    Howcroft J; Kofman J; Lemaire ED
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1812-1820. PubMed ID: 28358689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The need to approximate the use-case in clinical machine learning.
    Saeb S; Lonini L; Jayaraman A; Mohr DC; Kording KP
    Gigascience; 2017 May; 6(5):1-9. PubMed ID: 28327985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prospects and Challenges of Using Machine Learning for Academic Forecasting.
    Onyema EM; Almuzaini KK; Onu FU; Verma D; Gregory US; Puttaramaiah M; Afriyie RK
    Comput Intell Neurosci; 2022; 2022():5624475. PubMed ID: 35909823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.
    Beltrame T; Amelard R; Wong A; Hughson RL
    J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning.
    Link J; Perst T; Stoeve M; Eskofier BM
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Data leakage inflates prediction performance in connectome-based machine learning models.
    Rosenblatt M; Tejavibulya L; Jiang R; Noble S; Scheinost D
    Nat Commun; 2024 Feb; 15(1):1829. PubMed ID: 38418819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wearable activity data can predict functional recovery after musculoskeletal injury: Feasibility of a machine learning approach.
    Braun BJ; Histing T; Menger MM; Herath SC; Mueller-Franzes GA; Grimm B; Marmor MT; Truhn D;
    Injury; 2024 Feb; 55(2):111254. PubMed ID: 38070329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning-Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children.
    Kim WP; Kim HJ; Pack SP; Lim JH; Cho CH; Lee HJ
    JAMA Netw Open; 2023 Mar; 6(3):e233502. PubMed ID: 36930149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overview of Artificial Intelligence-Driven Wearable Devices for Diabetes: Scoping Review.
    Ahmed A; Aziz S; Abd-Alrazaq A; Farooq F; Sheikh J
    J Med Internet Res; 2022 Aug; 24(8):e36010. PubMed ID: 35943772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and Validation of a Machine Learning Algorithm After Primary Total Hip Arthroplasty: Applications to Length of Stay and Payment Models.
    Ramkumar PN; Navarro SM; Haeberle HS; Karnuta JM; Mont MA; Iannotti JP; Patterson BM; Krebs VE
    J Arthroplasty; 2019 Apr; 34(4):632-637. PubMed ID: 30665831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. WARNING: A Wearable Inertial-Based Sensor Integrated with a Support Vector Machine Algorithm for the Identification of Faults during Race Walking.
    Taborri J; Palermo E; Rossi S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitigating Bias and Error in Machine Learning to Protect Sports Data.
    Zhang J; Li J
    Comput Intell Neurosci; 2022; 2022():4777010. PubMed ID: 35602627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone.
    Kim H; Lee S; Lee S; Hong S; Kang H; Kim N
    JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model-Based and Model-Free Techniques for Amyotrophic Lateral Sclerosis Diagnostic Prediction and Patient Clustering.
    Tang M; Gao C; Goutman SA; Kalinin A; Mukherjee B; Guan Y; Dinov ID
    Neuroinformatics; 2019 Jul; 17(3):407-421. PubMed ID: 30460455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison and validation of injury risk classifiers for advanced automated crash notification systems.
    Kusano K; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S126-33. PubMed ID: 25307377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices.
    Sanchez-Iborra R
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of Talking in Respiratory Signals: A Feasibility Study Using Machine Learning and Wearable Textile-Based Sensors.
    Ejupi A; Menon C
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30065177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.