These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35619967)

  • 1. ROS-Neuro: An Open-Source Platform for Neurorobotics.
    Tonin L; Beraldo G; Tortora S; Menegatti E
    Front Neurorobot; 2022; 16():886050. PubMed ID: 35619967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.
    Falotico E; Vannucci L; Ambrosano A; Albanese U; Ulbrich S; Vasquez Tieck JC; Hinkel G; Kaiser J; Peric I; Denninger O; Cauli N; Kirtay M; Roennau A; Klinker G; Von Arnim A; Guyot L; Peppicelli D; Martínez-Cañada P; Ros E; Maier P; Weber S; Huber M; Plecher D; Röhrbein F; Deser S; Roitberg A; van der Smagt P; Dillman R; Levi P; Laschi C; Knoll AC; Gewaltig MO
    Front Neurorobot; 2017; 11():2. PubMed ID: 28179882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurorobotics Workshop for High School Students Promotes Competence and Confidence in Computational Neuroscience.
    Harris CA; Guerri L; Mircic S; Reining Z; Amorim M; Jović Ð; Wallace W; DeBoer J; Gage GJ
    Front Neurorobot; 2020; 14():6. PubMed ID: 32116636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians.
    Iosa M; Morone G; Cherubini A; Paolucci S
    J Med Biol Eng; 2016; 36():1-11. PubMed ID: 27069459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PlatypOUs-A Mobile Robot Platform and Demonstration Tool Supporting STEM Education.
    Rácz M; Noboa E; Détár B; Nemes Á; Galambos P; Szűcs L; Márton G; Eigner G; Haidegger T
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assess and rehabilitate body representations
    Risso G; Bassolino M
    Front Neurorobot; 2022; 16():964720. PubMed ID: 36160286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridging 3D Slicer and ROS2 for Image-Guided Robotic Interventions.
    Connolly L; Deguet A; Leonard S; Tokuda J; Ungi T; Krieger A; Kazanzides P; Mousavi P; Fichtinger G; Taylor RH
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.
    Frank T; Krieger A; Leonard S; Patel NA; Tokuda J
    Int J Comput Assist Radiol Surg; 2017 Aug; 12(8):1451-1460. PubMed ID: 28567563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limits of Neural Computation in Humans and Machines.
    Taraban R
    Sci Eng Ethics; 2020 Oct; 26(5):2547-2553. PubMed ID: 32749646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalisation, decision making, and embodiment effects in mental rotation: A neurorobotic architecture tested with a humanoid robot.
    Seepanomwan K; Caligiore D; Cangelosi A; Baldassarre G
    Neural Netw; 2015 Dec; 72():31-47. PubMed ID: 26604095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EUROPA: A Case Study for Teaching Sensors, Data Acquisition and Robotics via a ROS-Based Educational Robot.
    Karalekas G; Vologiannidis S; Kalomiros J
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32349247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROBOTONT - Open-source and ROS-supported omnidirectional mobile robot for education and research.
    Raudmäe R; Schumann S; Vunder V; Oidekivi M; Nigol MK; Valner R; Masnavi H; Singh AK; Aabloo A; Kruusamäe K
    HardwareX; 2023 Jun; 14():e00436. PubMed ID: 37424926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards IoT-Aided Human-Robot Interaction Using NEP and ROS: A Platform-Independent, Accessible and Distributed Approach.
    Coronado E; Venture G
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges.
    Nizamis K; Athanasiou A; Almpani S; Dimitrousis C; Astaras A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual Neurorobotics (VNR) to Accelerate Development of Plausible Neuromorphic Brain Architectures.
    Goodman PH; Buntha S; Zou Q; Dascalu SM
    Front Neurorobot; 2007; 1():1. PubMed ID: 18958272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neurorobotics approach to behaviour selection based on human activity recognition.
    Ranieri CM; Moioli RC; Vargas PA; Romero RAF
    Cogn Neurodyn; 2023 Aug; 17(4):1009-1028. PubMed ID: 37522044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients.
    Casey A; Azhar H; Grzes M; Sakel M
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):525-537. PubMed ID: 31711336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Q-Learning in Robotics: Improvement of Accuracy and Repeatability.
    Sumanas M; Petronis A; Bucinskas V; Dzedzickis A; Virzonis D; Morkvenaite-Vilkonciene I
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethical and Social Aspects of Neurorobotics.
    Aicardi C; Akintoye S; Fothergill BT; Guerrero M; Klinker G; Knight W; Klüver L; Morel Y; Morin FO; Stahl BC; Ulnicane I
    Sci Eng Ethics; 2020 Oct; 26(5):2533-2546. PubMed ID: 32700245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Framework and implications of virtual neurorobotics.
    Goodman PH; Zou Q; Dascalu SM
    Front Neurosci; 2008 Jul; 2(1):123-9. PubMed ID: 18982115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.