These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35619967)

  • 21. Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm.
    Quiles E; Dadone J; Chio N; García E
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual reality system in conjunction with neurorobotics and neuroprosthetics for rehabilitation of motor disorders.
    De Mauro A; Carrasco E; Oyarzun D; Ardanza A; Frizera Neto A; Torricelli D; Pons JL; Gil A; Florez J
    Stud Health Technol Inform; 2011; 163():163-5. PubMed ID: 21335782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Closed Loop Interactions between Spiking Neural Network and Robotic Simulators Based on MUSIC and ROS.
    Weidel P; Djurfeldt M; Duarte RC; Morrison A
    Front Neuroinform; 2016; 10():31. PubMed ID: 27536234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robotic interfaces for cognitive psychology and embodiment research: A research roadmap.
    Beckerle P; Castellini C; Lenggenhager B
    Wiley Interdiscip Rev Cogn Sci; 2019 Mar; 10(2):e1486. PubMed ID: 30485732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms.
    Athanasiou A; Xygonakis I; Pandria N; Kartsidis P; Arfaras G; Kavazidi KR; Foroglou N; Astaras A; Bamidis PD
    Biomed Res Int; 2017; 2017():5708937. PubMed ID: 28948168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Brain-Machine Interface and Neuro-Rehabilitation].
    Ushiba J
    Brain Nerve; 2019 Jul; 71(7):793-804. PubMed ID: 31289253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neuro-robotics paradigm: NEURARM, NEUROExos, HANDEXOS.
    Lenzi T; De Rossi S; Vitiello N; Chiri A; Roccella S; Giovacchini F; Vecchi F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2430-3. PubMed ID: 19965203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Neurorobotics Platform Robot Designer: Modeling Morphologies for Embodied Learning Experiments.
    Feldotto B; Morin FO; Knoll A
    Front Neurorobot; 2022; 16():856727. PubMed ID: 35548779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurorobotics-A Thriving Community and a Promising Pathway Toward Intelligent Cognitive Robots.
    Krichmar JL
    Front Neurorobot; 2018; 12():42. PubMed ID: 30061820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurorobotic Models of Neurological Disorders: A Mini Review.
    Pronin S; Wellacott L; Pimentel J; Moioli RC; Vargas PA
    Front Neurorobot; 2021; 15():634045. PubMed ID: 33828474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R; Dietz V
    J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robot Assisted Ankle Neuro-Rehabilitation: State of the art and Future Challenges.
    Hussain S; Jamwal PK; Vliet PV; Brown NAT
    Expert Rev Neurother; 2021 Jan; 21(1):111-121. PubMed ID: 33198522
    [No Abstract]   [Full Text] [Related]  

  • 34. An open-source and cross-platform framework for Brain Computer Interface-guided robotic arm control.
    Kubben PL; Pouratian N
    Surg Neurol Int; 2012; 3():149. PubMed ID: 23372966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surgeon-robot interface development framework.
    Prokhorenko L; Klimov D; Mishchenkov D; Poduraev Y
    Comput Biol Med; 2020 May; 120():103717. PubMed ID: 32224290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acceptability Study of A3-K3 Robotic Architecture for a Neurorobotics Painting.
    Tramonte S; Sorbello R; Guger C; Chella A
    Front Neurorobot; 2018; 12():81. PubMed ID: 30687057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous Autonomous Robotic System in Viticulture and Mariculture: Vehicles Development and Systems Integration.
    Kapetanović N; Goričanec J; Vatavuk I; Hrabar I; Stuhne D; Vasiljević G; Kovačić Z; Mišković N; Antolović N; Anić M; Kozina B
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robot Operating System 2: Design, architecture, and uses in the wild.
    Macenski S; Foote T; Gerkey B; Lalancette C; Woodall W
    Sci Robot; 2022 May; 7(66):eabm6074. PubMed ID: 35544605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.
    He Y; Nathan K; Venkatakrishnan A; Rovekamp R; Beck C; Ozdemir R; Francisco GE; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3985-8. PubMed ID: 25570865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.