These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35620434)

  • 1. Levelized cost-based learning analysis of utility-scale wind and solar in the United States.
    Bolinger M; Wiser R; O'Shaughnessy E
    iScience; 2022 Jun; 25(6):104378. PubMed ID: 35620434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging Green Ammonia for Resilient and Cost-Competitive Islanded Electricity Generation from Hybrid Solar Photovoltaic-Wind Farms: A Case Study in South Africa.
    Sagel VN; Rouwenhorst KHR; Faria JA
    Energy Fuels; 2023 Sep; 37(18):14383-14392. PubMed ID: 37753452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Levelized cost of offshore wind power in China.
    Xu Y; Yang K; Yuan J
    Environ Sci Pollut Res Int; 2021 May; 28(20):25614-25627. PubMed ID: 33462695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Levelized cost estimates of solar photovoltaic electricity in the United Kingdom until 2035.
    Mandys F; Chitnis M; Silva SRP
    Patterns (N Y); 2023 May; 4(5):100735. PubMed ID: 37223275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actual cost of electricity: An economic index to overcome levelized cost of electricity limits.
    Manzolini G; Binotti M; Gentile G; Picotti G; Pilotti L; Cholette ME
    iScience; 2024 Jun; 27(6):109897. PubMed ID: 38827407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying economically viable tidal sites within the Alderney Race through optimization of levelized cost of energy.
    Goss ZL; Coles DS; Piggott MD
    Philos Trans A Math Phys Eng Sci; 2020 Aug; 378(2178):20190500. PubMed ID: 32713319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The levelized cost of electricity from perovskite photovoltaics.
    De Bastiani M; Larini V; Montecucco R; Grancini G
    Energy Environ Sci; 2023 Feb; 16(2):421-429. PubMed ID: 36818744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America.
    Barbosa LS; Bogdanov D; Vainikka P; Breyer C
    PLoS One; 2017; 12(3):e0173820. PubMed ID: 28329023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind farm topology-finding algorithm considering performance, costs, and environmental impacts.
    Tazi N; Chatelet E; Bouzidi Y; Meziane R
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):24526-24534. PubMed ID: 28585005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Economic Feasibility of Floating Offshore Wind Farms Considering Near Future Wind Resources: Case Study of Iberian Coast and Bay of Biscay.
    Castro-Santos L; deCastro M; Costoya X; Filgueira-Vizoso A; Lamas-Galdo I; Ribeiro A; Dias JM; Gómez-Gesteira M
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33806488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A techno-economic perspective on rigid and flexible perovskite solar modules.
    McGovern L; Garnett EC; Veenstra S; van der Zwaan B
    Sustain Energy Fuels; 2023 Oct; 7(21):5259-5270. PubMed ID: 38013782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical hierarchy process and economic analysis for optimal renewable sites in Bangladesh.
    Amin IK; Islam MN; Jaman A; Hasan MK; Parvez SH; Shajid MSS
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):92332-92358. PubMed ID: 37488382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies.
    Castro-Santos L; Filgueira-Vizoso A
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31892261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using green finance to counteract the adverse effects of COVID-19 pandemic on renewable energy investment-The case of offshore wind power in China.
    Tu Q; Mo J; Liu Z; Gong C; Fan Y
    Energy Policy; 2021 Nov; 158():112542. PubMed ID: 34539036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling Afghanistan's wind and hydrogen potential: a comparative study.
    Mostafaeipour A; Mishra P; Le T
    Environ Sci Pollut Res Int; 2024 Sep; 31(42):54417-54439. PubMed ID: 38992304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentrated solar power: technology, economy analysis, and policy implications in China.
    Xu Y; Pei J; Yuan J; Zhao G
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):1324-1337. PubMed ID: 34355323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification.
    Chien F; Ngo QT; Hsu CC; Chau KY; Mohsin M
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65960-65973. PubMed ID: 34327644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar-driven Dish Stirling System for sustainable power generation in Bangladesh: A case study in Cox's Bazar.
    Hossain MS; Ihsan Rahat MA; Khan MSH; Salehin S; Karim MR
    Heliyon; 2023 Mar; 9(3):e14322. PubMed ID: 36938446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. China's power transition under the global 1.5 °C target: preliminary feasibility study and prospect.
    Xu Y; Yang K; Yuan J
    Environ Sci Pollut Res Int; 2020 May; 27(13):15113-15129. PubMed ID: 32064579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost Dynamics of Clean Energy Technologies.
    Glenk G; Meier R; Reichelstein S
    Schmalenbach Z Betriebswirtsch Forsch; 2021; 73(2):179-206. PubMed ID: 34764538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.