These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 35620468)

  • 1. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel ratio-metric features enable the identification of new driver genes across cancer types.
    Sudhakar M; Rengaswamy R; Raman K
    Sci Rep; 2022 Jan; 12(1):5. PubMed ID: 34997044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer driver mutation prediction through Bayesian integration of multi-omic data.
    Wang Z; Ng KS; Chen T; Kim TB; Wang F; Shaw K; Scott KL; Meric-Bernstam F; Mills GB; Chen K
    PLoS One; 2018; 13(5):e0196939. PubMed ID: 29738578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features.
    Lyu J; Li JJ; Su J; Peng F; Chen YE; Ge X; Li W
    Sci Adv; 2020 Nov; 6(46):. PubMed ID: 33177077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying cancer type specific oncogenes and tumor suppressors using limited size data.
    Pavel AB; Vasile CI
    J Bioinform Comput Biol; 2016 Dec; 14(6):1650031. PubMed ID: 27712196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel hypergraph model for identifying and prioritizing personalized drivers in cancer.
    Zhang N; Ma F; Guo D; Pang Y; Wang C; Zhang Y; Zheng X; Wang M
    PLoS Comput Biol; 2024 Apr; 20(4):e1012068. PubMed ID: 38683860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. driveR: a novel method for prioritizing cancer driver genes using somatic genomics data.
    Ülgen E; Sezerman OU
    BMC Bioinformatics; 2021 May; 22(1):263. PubMed ID: 34030627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of driver genes with tumor suppressive and oncogenic roles in gastric cancer.
    Wang T; Liu Y; Zhao M
    PeerJ; 2017; 5():e3585. PubMed ID: 28729958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic selection distinguishes oncogenes and tumor suppressor genes.
    Chandrashekar P; Ahmadinejad N; Wang J; Sekulic A; Egan JB; Asmann YW; Kumar S; Maley C; Liu L
    Bioinformatics; 2020 Mar; 36(6):1712-1717. PubMed ID: 32176769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms.
    Li F; Chu X; Dai L; Wang J; Liu J; Shang J
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatic Mutational Profile of High-Grade Serous Ovarian Carcinoma and Triple-Negative Breast Carcinoma in Young and Elderly Patients: Similarities and Divergences.
    Serio PAMP; de Lima Pereira GF; Katayama MLH; Roela RA; Maistro S; Folgueira MAAK
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Graph Convolution Network-Based Model for Prioritizing Personalized Cancer Driver Genes of Individual Patients.
    Peng W; Yu P; Dai W; Fu X; Liu L; Pan Y
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):744-754. PubMed ID: 37195839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating mutation and gene expression cross-sectional data to infer cancer progression.
    Fleck JL; Pavel AB; Cassandras CG
    BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying cooperating cancer driver genes in individual patients through hypergraph random walk.
    Zhang T; Zhang SW; Xie MY; Li Y
    J Biomed Inform; 2024 Sep; 157():104710. PubMed ID: 39159864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Structure Readouts of Cancer Drivers for Precision Medicine.
    Dhanjal JK; Kalra RS
    Curr Protein Pept Sci; 2022; 23(3):158-165. PubMed ID: 35331108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.