These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 35620468)
41. deepDriver: Predicting Cancer Driver Genes Based on Somatic Mutations Using Deep Convolutional Neural Networks. Luo P; Ding Y; Lei X; Wu FX Front Genet; 2019; 10():13. PubMed ID: 30761181 [TBL] [Abstract][Full Text] [Related]
42. Discovering potential cancer driver genes by an integrated network-based approach. Shi K; Gao L; Wang B Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053 [TBL] [Abstract][Full Text] [Related]
43. TP53_PROF: a machine learning model to predict impact of missense mutations in TP53. Ben-Cohen G; Doffe F; Devir M; Leroy B; Soussi T; Rosenberg S Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043155 [TBL] [Abstract][Full Text] [Related]
44. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Davoli T; Xu AW; Mengwasser KE; Sack LM; Yoon JC; Park PJ; Elledge SJ Cell; 2013 Nov; 155(4):948-62. PubMed ID: 24183448 [TBL] [Abstract][Full Text] [Related]
45. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. Zhang J; Zhang S; Wang Y; Zhang XS BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034 [TBL] [Abstract][Full Text] [Related]
46. DriverMP enables improved identification of cancer driver genes. Liu Y; Han J; Kong T; Xiao N; Mei Q; Liu J Gigascience; 2022 Dec; 12():. PubMed ID: 38091511 [TBL] [Abstract][Full Text] [Related]
47. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data. Jia P; Zhao Z PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372 [TBL] [Abstract][Full Text] [Related]
48. Evaluating the evaluation of cancer driver genes. Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828 [TBL] [Abstract][Full Text] [Related]
49. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph. Wang C; Shi J; Cai J; Zhang Y; Zheng X; Zhang N BMC Bioinformatics; 2022 Jul; 23(1):277. PubMed ID: 35831792 [TBL] [Abstract][Full Text] [Related]
50. Identification of constrained cancer driver genes based on mutation timing. Sakoparnig T; Fried P; Beerenwinkel N PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148 [TBL] [Abstract][Full Text] [Related]
51. Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era. Porta-Pardo E; Valencia A; Godzik A FEBS Lett; 2020 Dec; 594(24):4233-4246. PubMed ID: 32239503 [TBL] [Abstract][Full Text] [Related]
52. Concordance of copy number loss and down-regulation of tumor suppressor genes: a pan-cancer study. Zhao M; Zhao Z BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):532. PubMed ID: 27556634 [TBL] [Abstract][Full Text] [Related]
53. Machine learning methods for prediction of cancer driver genes: a survey paper. Andrades R; Recamonde-Mendoza M Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323900 [TBL] [Abstract][Full Text] [Related]
54. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432 [TBL] [Abstract][Full Text] [Related]
55. GenHITS: A network science approach to driver gene detection in human regulatory network using gene's influence evaluation. Akhavan-Safar M; Teimourpour B; Kargari M J Biomed Inform; 2021 Feb; 114():103661. PubMed ID: 33326867 [TBL] [Abstract][Full Text] [Related]
56. Inferring causal genomic alterations in breast cancer using gene expression data. Tran LM; Zhang B; Zhang Z; Zhang C; Xie T; Lamb JR; Dai H; Schadt EE; Zhu J BMC Syst Biol; 2011 Aug; 5():121. PubMed ID: 21806811 [TBL] [Abstract][Full Text] [Related]
57. A network-based method for identifying cancer driver genes based on node control centrality. Li F; Li H; Shang J; Liu JX; Dai L; Liu X; Li Y Exp Biol Med (Maywood); 2023 Feb; 248(3):232-241. PubMed ID: 36573462 [TBL] [Abstract][Full Text] [Related]
58. DRdriver: identifying drug resistance driver genes using individual-specific gene regulatory network. Huang YE; Zhou S; Liu H; Zhou X; Yuan M; Hou F; Chen S; Chen J; Wang L; Jiang W Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869849 [TBL] [Abstract][Full Text] [Related]
59. Evaluating machine learning methodologies for identification of cancer driver genes. Malebary SJ; Khan YD Sci Rep; 2021 Jun; 11(1):12281. PubMed ID: 34112883 [TBL] [Abstract][Full Text] [Related]
60. Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study. Shi J; Hua X; Zhu B; Ravichandran S; Wang M; Nguyen C; Brodie SA; Palleschi A; Alloisio M; Pariscenti G; Jones K; Zhou W; Bouk AJ; Boland J; Hicks B; Risch A; Bennett H; Luke BT; Song L; Duan J; Liu P; Kohno T; Chen Q; Meerzaman D; Marconett C; Laird-Offringa I; Mills I; Caporaso NE; Gail MH; Pesatori AC; Consonni D; Bertazzi PA; Chanock SJ; Landi MT PLoS Med; 2016 Dec; 13(12):e1002162. PubMed ID: 27923066 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]