These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35620594)

  • 1. Predicting Coronary Stenosis Progression Using Plaque Fatigue From IVUS-Based Thin-Slice Models: A Machine Learning Random Forest Approach.
    Guo X; Maehara A; Yang M; Wang L; Zheng J; Samady H; Mintz GS; Giddens DP; Tang D
    Front Physiol; 2022; 13():912447. PubMed ID: 35620594
    [No Abstract]   [Full Text] [Related]  

  • 2. Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid-structure interaction models and machine learning methods with patient follow-up data: a feasibility study.
    Guo X; Maehara A; Matsumura M; Wang L; Zheng J; Samady H; Mintz GS; Giddens DP; Tang D
    Biomed Eng Online; 2021 Apr; 20(1):34. PubMed ID: 33823858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models.
    Lv R; Maehara A; Matsumura M; Wang L; Zhang C; Huang M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Front Bioeng Biotechnol; 2021; 9():713525. PubMed ID: 34497800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions.
    Lv R; Wang L; Maehara A; Matsumura M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    J Funct Biomater; 2023 Jan; 14(1):. PubMed ID: 36662088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: A preliminary study.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Zheng J; Bach R; Billiar KL; Mintz GS
    J Biomech; 2018 Feb; 68():43-50. PubMed ID: 29274686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multimodality Image-Based Fluid-Structure Interaction Modeling Approach for Prediction of Coronary Plaque Progression Using IVUS and Optical Coherence Tomography Data With Follow-Up.
    Guo X; Giddens DP; Molony D; Yang C; Samady H; Zheng J; Matsumura M; Mintz GS; Maehara A; Wang L; Tang D
    J Biomech Eng; 2019 Sep; 141(9):0910031-9. PubMed ID: 31141591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Matsumura M; Zheng J; Bach R; Billiar KL; Stone GW; Mintz GS
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1267-1276. PubMed ID: 32696674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.
    Wang L; Tang D; Maehara A; Molony D; Zheng J; Samady H; Wu Z; Lu W; Zhu J; Ma G; Giddens DP; Stone GW; Mintz GS
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1269-1280. PubMed ID: 30937650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study.
    Guo X; Zhu J; Maehara A; Monoly D; Samady H; Wang L; Billiar KL; Zheng J; Yang C; Mintz GS; Giddens DP; Tang D
    Biomech Model Mechanobiol; 2017 Feb; 16(1):333-344. PubMed ID: 27561649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of Multimodality Intravascular Imaging and the Local Hemodynamic Forces to Predict Atherosclerotic Disease Progression.
    Bourantas CV; Räber L; Sakellarios A; Ueki Y; Zanchin T; Koskinas KC; Yamaji K; Taniwaki M; Heg D; Radu MD; Papafaklis MI; Kalatzis F; Naka KK; Fotiadis DI; Mathur A; Serruys PW; Michalis LK; Garcia-Garcia HM; Karagiannis A; Windecker S
    JACC Cardiovasc Imaging; 2020 Apr; 13(4):1021-1032. PubMed ID: 31202749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study.
    Fan R; Tang D; Yang C; Zheng J; Bach R; Wang L; Muccigrosso D; Billiar K; Zhu J; Ma G; Maehara A; Mintz GS
    Biomed Eng Online; 2014 Mar; 13(1):32. PubMed ID: 24669780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of tissue characteristics on luminal narrowing of mild angiographic coronary stenosis: assessment of integrated backscatter intravascular ultrasound.
    Iwama M; Tanaka S; Noda T; Segawa T; Kawasaki M; Nishigaki K; Minagawa T; Watanabe S; Minatoguchi S
    Heart Vessels; 2014 Nov; 29(6):750-60. PubMed ID: 24154856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intravascular ultrasound radiofrequency signal analysis of blood speckles: Physiological assessment of intermediate coronary artery stenosis.
    Okada K; Hibi K; Matsushita K; Yagami H; Tamura K; Honda Y; Kimura K
    Catheter Cardiovasc Interv; 2020 Aug; 96(2):E155-E164. PubMed ID: 31778026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress.
    Yang C; Canton G; Yuan C; Ferguson M; Hatsukami TS; Tang D
    Biomed Eng Online; 2011 Jul; 10():61. PubMed ID: 21771293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Patient-Specific
    Wang L; Zhu J; Maehara A; Lv R; Qu Y; Zhang X; Guo X; Billiar KL; Chen L; Ma G; Mintz GS; Tang D
    Front Physiol; 2021; 12():721195. PubMed ID: 34759832
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of coronary minimal lumen area quantification by sixty-four-slice computed tomography versus intravascular ultrasound for intermediate stenosis.
    Caussin C; Larchez C; Ghostine S; Pesenti-Rossi D; Daoud B; Habis M; Sigal-Cinqualbre A; Perrier E; Angel CY; Lancelin B; Paul JF
    Am J Cardiol; 2006 Oct; 98(7):871-6. PubMed ID: 16996865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology.
    de Graaf MA; Broersen A; Kitslaar PH; Roos CJ; Dijkstra J; Lelieveldt BP; Jukema JW; Schalij MJ; Delgado V; Bax JJ; Reiber JH; Scholte AJ
    Int J Cardiovasc Imaging; 2013 Jun; 29(5):1177-90. PubMed ID: 23417447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiographically uncertain left main coronary artery narrowings: correlation with multidetector computed tomography and intravascular ultrasound.
    Dragu R; Kerner A; Gruberg L; Rispler S; Lessick J; Ghersin E; Litmanovich D; Engel A; Beyar R; Roguin A
    Int J Cardiovasc Imaging; 2008 Jun; 24(5):557-63. PubMed ID: 18165931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-stent area stenosis on 64-slice multi-detector computed tomography coronary angiography: optimal cutoff value for minimum lumen cross-sectional area of coronary stents compared with intravascular ultrasound.
    Kwon W; Choi J; Kim JY; Kim SY; Yoon J; Choe KH; Lee SH; Ahn SG
    Int J Cardiovasc Imaging; 2012 Jun; 28 Suppl 1():21-31. PubMed ID: 22562285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression.
    Berry C; L'Allier PL; Grégoire J; Lespérance J; Levesque S; Ibrahim R; Tardif JC
    Circulation; 2007 Apr; 115(14):1851-7. PubMed ID: 17389269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.